login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002248
Number of points on y^2 + xy = x^3 + x^2 + x over GF(2^n).
2
2, 8, 14, 16, 22, 56, 142, 288, 518, 968, 1982, 4144, 8374, 16472, 32494, 65088, 131174, 263144, 525086, 1047376, 2094358, 4193912, 8393806, 16783200, 33550022, 67092488, 134210174, 268460656, 536911222
OFFSET
1,1
COMMENTS
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). The point at infinity is counted also. - T. D. Noe, Mar 12 2009
LINKS
Hugh Williams, R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory vol. 7 (5) (2011) 1255-1277
FORMULA
a(n) = 2^n + 1 - b(n); b(n) = b(n-1) - 2*b(n-2), b(1)=1, b(2)=-3; b(n) = A002249(n).
G.f.: -2*x*(-1+2*x^2) / ( (x-1)*(2*x-1)*(2*x^2 - x + 1) ).
a(n) = 4*a(n-1) - 7*a(n-2) + 8*a(n-3) - 4*a(n-4). - Vincenzo Librandi, Jun 18 2012
MATHEMATICA
Needs["FiniteFields`"]; Table[cnt=1; (* 1 point at infinity *) f=Table[GF[2, n][IntegerDigits[i, 2, n]], {i, 0, 2^n-1}]; Do[If[y^2+x*y-x^3-x^2-x==0, cnt++ ], {x, f}, {y, f}]; cnt, {n, 6}] (* T. D. Noe, Mar 12 2009 *)
LinearRecurrence[{4, -7, 8, -4}, {2, 8, 14, 16}, 30] (* Vincenzo Librandi, Jun 18 2012 *)
PROG
(Magma) I:=[2, 8, 14, 16]; [n le 4 select I[n] else 4*Self(n-1)-7*Self(n-2)+8*Self(n-3)-4*Self(n-4): n in [1..45]]; // Vincenzo Librandi, Jun 18 2012
(PARI) a(n)=([0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1; -4, 8, -7, 4]^(n-1)*[2; 8; 14; 16])[1, 1] \\ Charles R Greathouse IV, Jun 23 2020
CROSSREFS
Sequence in context: A329453 A319964 A357401 * A333968 A194278 A050619
KEYWORD
nonn,easy
STATUS
approved