login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022916
Multinomial coefficient n!/([n/3]![(n+1)/3]![(n+2)/3]!).
7
1, 1, 2, 6, 12, 30, 90, 210, 560, 1680, 4200, 11550, 34650, 90090, 252252, 756756, 2018016, 5717712, 17153136, 46558512, 133024320, 399072960, 1097450640, 3155170590, 9465511770, 26293088250, 75957810500, 227873431500, 638045608200, 1850332263780, 5550996791340
OFFSET
0,3
COMMENTS
Number of permutation patterns modulo 3. This matches the multinomial formula. - Olivier Gérard, Feb 25 2011
Also the number of permutations of n elements where p(k-3) < p(k) for all k. - Joerg Arndt, Jul 23 2011
Also the number of n-step walks on cubic lattice starting at (0,0,0), ending at (floor(n/3), floor((n+1)/3), floor((n+2)/3)), remaining in the first (nonnegative) octant and using steps (0,0,1), (0,1,0), and (1,0,0). - Alois P. Heinz, Oct 11 2019
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 101 terms from Vincenzo Librandi)
FORMULA
Recurrence: (n+1)*(n+2)*(3*n+1)*a(n) = 3*(3*n^2 + 3*n + 2)*a(n-1) + 27*(n-1)*(n+2)*a(n-2) + 27*(n-2)*(n-1)*(3*n+4)*a(n-3). - Vaclav Kotesovec, Feb 26 2014
a(n) ~ 3^(n+3/2) / (2*Pi*n). - Vaclav Kotesovec, Feb 26 2014
EXAMPLE
Starting from n=4, several permutations have the same pattern. Both (3,1,4,2) and (3,4,1,2) have pattern (0, 1, 1, 2) modulo 3.
MAPLE
a:= n-> combinat[multinomial](n, floor((n+i)/3)$i=0..2):
seq(a(n), n=0..24); # Alois P. Heinz, Oct 11 2019
MATHEMATICA
Table[ n!/(Quotient[n, 3]!*Quotient[n + 1, 3]!*Quotient[n + 2, 3]!), {n, 0, 30}]
Table[n!/Times@@(Floor/@((n+{0, 1, 2})/3)!), {n, 0, 30}] (* Harvey P. Dale, Jul 13 2012 *)
Table[Multinomial[Floor[n/3], Floor[(n+1)/3], Floor[(n+2)/3]], {n, 0, 30}] (* Jean-François Alcover, Jun 24 2015 *)
PROG
(PARI) a(n)=n!/((n\3)!*((n+1)\3)!*((n+2)\3)!)
(PARI) {a(n)= if(n<0, 0, n!/(n\3)!/((n+1)\3)!/((n+2)\3)!)} /* Michael Somos, Jun 20 2007 */
CROSSREFS
A006480(n) = a(3*n).
Cf. A001405 (permutation patterns mod 2).
Cf. A022917 (permutation patterns mod 4).
Sequence in context: A291518 A291445 A320664 * A073949 A367336 A080372
KEYWORD
nonn,easy,nice
AUTHOR
Clark Kimberling, Jun 14 1998
EXTENSIONS
Corrected by Michael Somos, Jun 20 2007
STATUS
approved