login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A102537
Triangle T(n,k) read by rows: (1/n) * C(2n+k,k-1) * C(n,k); n, k >= 1.
7
1, 1, 3, 1, 8, 12, 1, 15, 55, 55, 1, 24, 156, 364, 273, 1, 35, 350, 1400, 2380, 1428, 1, 48, 680, 4080, 11628, 15504, 7752, 1, 63, 1197, 9975, 41895, 92169, 100947, 43263, 1, 80, 1960, 21560, 123970, 396704, 708400, 657800, 246675, 1, 99, 3036, 42504
OFFSET
1,3
COMMENTS
Number of dissections of a convex (2n+2)-gon by k-1 noncrossing diagonals into (2j+2)-gons, 1 <= j <= n-1.
Apparently, a signed, refined version of this array is given on page 65 of the Einziger link, related to the antipode of a Hopf algebra. - Tom Copeland, May 19 2015
The f-vectors of the simplicial noncrossing hypertree complexes of McCammond (p. 15). The reduced Euler characteristics are the signed Catalan numbers A000108. - Tom Copeland, May 19 2017
The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial ((x+1)*(x+2)*...*(x+2n+1))*((x+n+2)*(x+n+3)*...*(x+2n)) / ((2n+1)!*(n)!) in the basis made of the binomial(x+i,i). - F. Chapoton, Nov 01 2022
Chapoton's observation above is correct: the precise expansion is ((x+1)*(x+2)*...*(x+2n+1))*((x+n+2)*(x+n+3)*...*(x+2n)) / ((2n+1)!*n!) = Sum_{k = 1..n} (-1)^(k+1)*T(n,n+1-k)*binomial(x+3*n+1-k, 3*n+1-k), as can be verified using the WZ algorithm. For example, n = 3 gives (x+1)*(x+2)*(x+3)*(x+4)*(x+5)*(x+6)*(x+7)*(x+5)(x+6)/(7!*3!) = 12*binomial(x+9,9) - 8*binomial(x+8,8) + binomial(x+7,7). - Peter Bala, Jun 25 2023
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150).
H. Einziger, Incidence Hopf algebras: Antipodes, forest formulas, and noncrossing partitions, Dissertation (2010), George Washington University.
J. McCammond, Noncrossing Hypertrees, 2015.
Jean-Christophe Novelli and Jean-Yves Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
Jean-Christophe Novelli and Jean-Yves Thibon, Noncommutative Symmetric Functions and Lagrange Inversion II: Noncrossing partitions and the Farahat-Higman algebra, arXiv:2106.08257 [math.CO], 2021-2022.
E. Tzanaki, Polygon dissections and some generalizations of cluster complexes, arXiv:math/0501100 [math.CO], 2005.
EXAMPLE
Triangle begins
1;
1, 3;
1, 8, 12;
1, 15, 55, 55;
1, 24, 156, 364, 273;
1, 35, 350, 1400, 2380, 1428;
1, 48, 680, 4080, 11628, 15504, 7752;
1, 63, 1197, 9975, 41895, 92169, 100947, 43263;
1, 80, 1960, 21560, 123970, 396704, 708400, 657800, 246675;
MATHEMATICA
Table[1/n*Binomial[2 n + k, k - 1] Binomial[n, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, May 20 2017 *)
PROG
(Magma) [[1/n * Binomial(2*n+k, k-1) * Binomial(n, k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, May 20 2015
CROSSREFS
Left-hand columns include A005563. Right-hand columns include essentially A001764 and A013698.
Row sums are in A003168.
Cf. A243662 for rows reversed.
Sequence in context: A343812 A357847 A019146 * A131202 A287987 A067955
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Jan 14 2005
STATUS
approved