login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: the x = 1+q Narayana triangle at m=2.
4

%I #73 Nov 01 2022 16:37:32

%S 1,3,2,12,16,5,55,110,70,14,273,728,702,288,42,1428,4760,6160,3850,

%T 1155,132,7752,31008,50388,42432,19448,4576,429,43263,201894,395010,

%U 418950,259350,93366,18018,1430,246675,1315600,3010700,3853696,3010700,1466080,433160,70720,4862

%N Triangle read by rows: the x = 1+q Narayana triangle at m=2.

%C See Novelli-Thibon (2014) for precise definition.

%C The rows seem to give (up to sign) the coefficients in the expansion of the integer-valued polynomial (x+1)*(x+2)^2*(x+3)^2*...*(x+n)^2*(x+n+1)*...*(x+2n+1) / (n! * (2n+1)!) in the basis made of the binomial(x+i,i). - _F. Chapoton_, Oct 09 2022

%C The Maple code T(n,k) := binomial(3*n+1-k,n-k)*binomial(2*n,k-1)/n: with(sumtools): sumrecursion( (-1)^(k+1)*T(n,k)*binomial(x+3*n-k+1, 3*n-k+1), k, s(n) ); returns the recurrence 2*(2*n+1)*n^2*s(n) = (x+n)*(x+2*n)*(x+2*n+1)*s(n-1). The above observation follows from this. - _Peter Bala_, Oct 30 2022

%H Andrew Howroyd, <a href="/A243660/b243660.txt">Table of n, a(n) for n = 1..1275</a> (first 50 rows)

%H J.-C. Novelli and J.-Y. Thibon, <a href="http://arxiv.org/abs/1403.5962">Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions</a>, arXiv preprint arXiv:1403.5962 [math.CO], 2014. See Fig. 8.

%F From _Werner Schulte_, Nov 23 2018: (Start)

%F T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n.

%F More generally: T(n,k) = binomial((m+1)*n+1-k,n-k) * binomial(m*n,k-1) / n, where m = 2.

%F Sum_{k=1..n} (-1)^k * T(n,k) = -1. (End)

%e Triangle begins:

%e 1;

%e 3, 2;

%e 12, 16, 5;

%e 55, 110, 70, 14;

%e 273, 728, 702, 288, 42;

%e 1428, 4760, 6160, 3850, 1155, 132;

%e ...

%t polrecip[P_, x_] := P /. x -> 1/x // Together // Numerator;

%t P[n_, m_] := Sum[Binomial[m n + 1, k] Binomial[(m+1) n - k, n - k] (1-x)^k x^(n-k), {k, 0, n}]/(m n + 1);

%t T[m_] := Reap[For[i=1, i <= 20, i++, z = polrecip[P[i, m], x] /. x -> 1+q; Sow[CoefficientList[z, q]]]][[2, 1]];

%t T[2] // Flatten (* _Jean-François Alcover_, Oct 08 2018, from PARI *)

%o (PARI)

%o N(n,m)=sum(k=0,n,binomial(m*n+1,k)*binomial((m+1)*n-k,n-k)*(1-x)^k*x^(n-k))/(m*n+1);

%o T(m)=for(i=1,20,z=subst(polrecip(N(i,m)),x,1+q);print(Vecrev(z)));

%o T(2) /* _Lars Blomberg_, Jul 17 2017 */

%o (PARI) T(n,k) = binomial(3*n+1-k,n-k) * binomial(2*n,k-1) / n; \\ _Andrew Howroyd_, Nov 23 2018

%Y Row sums give A034015(n-1).

%Y The case m=1 is A126216 or A033282 (its mirror image).

%Y The case m=3 is A243661.

%Y The right diagonal is A000108.

%Y The left column is A001764.

%K nonn,tabl

%O 1,2

%A _N. J. A. Sloane_, Jun 13 2014

%E Corrected example and a(22)-a(43) from _Lars Blomberg_, Jul 12 2017

%E a(44)-a(45) from _Werner Schulte_, Nov 23 2018