Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M2256 #42 Jun 30 2022 19:41:39
%S 1,0,1,0,3,2,12,14,54,86,274,528,1515,3266,8854,20422,53786,129368,
%T 336103,830148,2145020,5390580,13913325,35378586,91415954,234397542,
%U 606983495,1566013450,4065765499,10540066710,27437831060,71404804002
%N Number of Dyck paths of knight moves.
%C A Dyck path of knight moves of size n is a path in ZxZ which:
%C (1) is made only of steps NNE, NEE, SSE and SEE;
%C (2) starts at (0,0) and ends at (n,0);
%C (3) never goes strictly below the x-axis. - _Gheorghe Coserea_, Jan 16 2017
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H T. D. Noe, <a href="/A005220/b005220.txt">Table of n, a(n) for n = 0..200</a>
%H Jean-Luc Baril and José L. Ramírez, <a href="http://jl.baril.u-bourgogne.fr/knight.pdf">Knight's paths towards Catalan numbers</a>, Univ. Bourgogne Franche-Comté (2022).
%H J. Labelle and Y.-N. Yeh, <a href="http://dx.doi.org/10.1016/0166-218X(92)90286-J">Dyck paths of knight moves</a>, Discrete Applied Math., 24 (1989), 213-221.
%F G.f.: (1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
%F a(n) ~ (2+sqrt(3))*(sqrt(3*(7*sqrt(3)-3)/46)-sqrt((9-5*sqrt(3))/2)) * (1+sqrt(3))^n/(2*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Aug 13 2013
%F a(n) = Sum_{m=0..n}((Sum_{j=ceiling(m/2)..m}(binomial(j,m-j)*binomial(m+1,j)))* Sum_{k=0..n-m}((binomial(m+2*k,k)*Sum_{l=0..k}(binomial(k,l)*binomial(k-l,n-m-3*l-k)*(-1)^(n-l-k)))/(m+k+1))). - _Vladimir Kruchinin_, Mar 05 2016
%F 0 = x^4*y^4 - x^2*(2*x+1)*y^3 + x*(x^3+2*x+2)*y^2 - (2*x+1)*y + 1, where y is the g.f. - _Gheorghe Coserea_, Jan 16 2017
%t gf = (1 + 2z + Sqrt[1 - 4z + 4z^2 - 4z^4] - Sqrt[2]*Sqrt[1 - 4z^2 - 2z^4 + (2z + 1)*Sqrt[1 - 4z + 4z^2 - 4z^4]])/(4z^2); CoefficientList[gf + O[z]^32, z] (* _Jean-François Alcover_, Jul 16 2015 *)
%o (Maxima)
%o a(n):=sum((sum(binomial(j,m-j)*binomial(m+1,j),j,ceiling(m/2),m))*sum((binomial(m+2*k,k)*sum(binomial(k,l)*binomial(k-l,n-m-3*l-k)*(-1)^(n-l-k),l,0,k))/(m+k+1),k,0,n-m),m,0,n); /* _Vladimir Kruchinin_, Mar 05 2016 */
%o (PARI)
%o x='x; y='y;
%o Fxy = x^4*y^4 - x^2*(2*x+1)*y^3 + x*(x^3+2*x+2)*y^2 - (2*x+1)*y + 1;
%o seq(N) = {
%o my(y0 = 1 + O('x^N), y1=0, dFxy=deriv(Fxy, 'y));
%o for (k = 1, N,
%o y1 = y0 - subst(Fxy, 'y, y0)/subst(dFxy, 'y, y0);
%o if (y1 == y0, break()); y0 = y1);
%o Vec(y0);
%o };
%o seq(32) \\ _Gheorghe Coserea_, Jan 16 2017
%Y Cf. A285174.
%K nonn,easy,nice,walk
%O 0,5
%A _N. J. A. Sloane_
%E More terms from _Emeric Deutsch_, Dec 17 2003