Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M3234 #28 Dec 26 2021 21:05:46
%S 1,0,1,0,4,4,18,26,86,158,462,976,2665,6082,16040,38338,99536,244880,
%T 631923,1583796,4081939,10358670,26728731,68425494,176964795,
%U 455967376,1182454137,3061954102,7962768190,20702327552,53983118006,140817757006
%N Number of Dyck paths of knight moves.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Vaclav Kotesovec, <a href="/A005222/b005222.txt">Table of n, a(n) for n = 0..1000</a>
%H Vaclav Kotesovec, <a href="/A005222/a005222.txt">Recurrence (of order 11)</a>
%H J. Labelle and Y.-N. Yeh, <a href="http://dx.doi.org/10.1016/0166-218X(92)90286-J">Dyck paths of knight moves</a>, Discrete Applied Math., 24 (1989), 213-221.
%F G.f.: A+z^4A^3/(1-zA)^2, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
%F a(n) ~ c * (1+sqrt(3))^n / n^(3/2), where c = sqrt(341*sqrt(3) - 225 + 3*sqrt(46*(197*sqrt(3) - 22))) / (4*sqrt(23*Pi)) = 0.794168381329... - _Vaclav Kotesovec_, Feb 29 2016
%F A(x) = x^2*A005220(x)*A005221(x) + x*A005221(x)^2 + A005220(x). - _Gheorghe Coserea_, Jan 16 2017
%t A[x_] = (s*(r-1+x-x^3) + x*(1+x)*(3+r*(x-1) + x*(6*x-5)))/(4*x^3) /. s -> Sqrt[2]*Sqrt[1+r-2*x*(2*x+x^3-r)] /. r -> Sqrt[1-4*x*(1-x+x^3)];
%t A[x] + O[x]^32 // CoefficientList[#, x]& (* _Jean-François Alcover_, Mar 26 2017, after _Gheorghe Coserea_ *)
%K nonn,easy,nice,walk
%O 0,5
%A _N. J. A. Sloane_
%E More terms from _Emeric Deutsch_, Dec 17 2003