login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Row sums of A182928.
6

%I #13 May 21 2019 05:53:36

%S 1,0,3,-8,25,-99,721,-5704,40881,-340325,3628801,-41245511,479001601,

%T -6129725315,87212177053,-1317906346184,20922789888001,

%U -354320889234597,6402373705728001,-121882630320799633,2432928081076384321,-51041048673495232715

%N Row sums of A182928.

%C The number of partitions of an n-set with distinct block sizes can

%C be computed recursively as A007837(0) = 1 and A007837(n) = - Sum_{1<=k<=n} binomial(n-1,k-1) * A182927(k) * A007837(n-k).

%C Möbius inversion yields: 1, -1, 2, -8, 24, -101, 720, -5696, 40878,...

%C A182927(2*i+1) = A182926(2*i+1)

%F a(n) = Sum_{d|n} -n!/(d*(-(n/d)!)^d).

%F E.g.f.: Sum_{k>=1} log(1 + x^k/k!). - _Ilya Gutkovskiy_, May 21 2019

%e a(6) = 1 - 10 + 30 - 120 = -99.

%p A182927 := proc(n) local d;

%p add(-n! / (d*(-(n/d)!)^d), d = numtheory[divisors](n)) end:

%p seq(A182927(i), i = 1..22);

%t a[n_] := Sum[ -n!/(d*(-(n/d)!)^d), {d, Divisors[n]}]; Table[a[n], {n, 1, 22}] // Flatten (* _Jean-François Alcover_, Jul 29 2013 *)

%Y Cf. A182926, A182928, A005651, A007837.

%K sign

%O 1,3

%A _Peter Luschny_, Apr 16 2011