login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357591
Expansion of e.g.f. (exp(x) - 1) * tan((exp(x) - 1)/2).
1
0, 0, 1, 3, 8, 25, 99, 476, 2643, 16575, 116002, 895719, 7554311, 69051034, 679913073, 7174562327, 80765185416, 966076987581, 12235992073975, 163590477924708, 2302288709067167, 34021599945907915, 526690307104399482, 8524372522971447683, 143963947160570293851
OFFSET
0,4
FORMULA
a(n) = 2 * Sum_{k=0..floor(n/2)} (-1)^k * Stirling2(n,2*k) * (1 - 4^k) * Bernoulli(2*k).
a(n) ~ n! * 2*Pi / ((Pi+1) * (log(1+Pi))^(n+1)).
MATHEMATICA
nmax = 20; CoefficientList[Series[(Exp[x] - 1)*Tan[(Exp[x] - 1)/2] , {x, 0, nmax}], x] * Range[0, nmax]!
Table[2*Sum[(-1)^k * StirlingS2[n, 2*k] * (1 - 4^k) * BernoulliB[2*k], {k, 0, n/2}], {n, 0, 20}]
PROG
(PARI) my(N=30, x='x+O('x^N)); concat([0, 0], Vec(serlaplace((exp(x)-1)*tan((exp(x)-1)/2)))) \\ Seiichi Manyama, Oct 05 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Oct 05 2022
STATUS
approved