OFFSET
0,4
COMMENTS
Stirling transform of the Genocchi numbers (of first kind, A036968).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..494
FORMULA
a(n) = 2 * Sum_{k=0..n} Stirling2(n,k) * (1 - 2^k) * Bernoulli(k).
a(n) ~ Pi^(3/2) * 2^(n + 7/2) * n^(n + 1/2) * (cos(n*arctan(2*arctan(Pi)/log(1 + Pi^2))) * (Pi*log(1 + Pi^2) + 2*arctan(Pi)) + (log(1 + Pi^2) - 2*Pi*arctan(Pi)) * sin(n*arctan(2*arctan(Pi)/log(1 + Pi^2)))) / ((1 + Pi^2) * exp(n) * (4*arctan(Pi)^2 + log(1 + Pi^2)^2)^(n/2 + 1)). - Vaclav Kotesovec, Oct 04 2022
MAPLE
b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 0,
m*euler(m-1, 0)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..26); # Alois P. Heinz, Jun 23 2023
MATHEMATICA
nmax = 26; CoefficientList[Series[2 (Exp[x] - 1)/(Exp[Exp[x] - 1] + 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[2 Sum[StirlingS2[n, k] (1 - 2^k) BernoulliB[k], {k, 0, n}], {n, 0, 26}]
PROG
(PARI) a(n) = 2*sum(k=0, n, stirling(n, k, 2)*(1-2^k)*bernfrac(k)); \\ Michel Marcus, Sep 20 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 19 2022
STATUS
approved