login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357240
Expansion of e.g.f. 2 * (exp(x) - 1) / (exp(exp(x) - 1) + 1).
2
0, 1, 0, -2, -5, -4, 32, 225, 794, 190, -22291, -200298, -920244, 924223, 65848880, 716920754, 3831260555, -13147083976, -575844827780, -7162425813919, -40755845041730, 320194436283162, 11810647258173653, 161108090793013130, 896865861205240824, -14305712791762925929, -487306962045115504436
OFFSET
0,4
COMMENTS
Stirling transform of the Genocchi numbers (of first kind, A036968).
LINKS
FORMULA
a(n) = 2 * Sum_{k=0..n} Stirling2(n,k) * (1 - 2^k) * Bernoulli(k).
a(n) ~ Pi^(3/2) * 2^(n + 7/2) * n^(n + 1/2) * (cos(n*arctan(2*arctan(Pi)/log(1 + Pi^2))) * (Pi*log(1 + Pi^2) + 2*arctan(Pi)) + (log(1 + Pi^2) - 2*Pi*arctan(Pi)) * sin(n*arctan(2*arctan(Pi)/log(1 + Pi^2)))) / ((1 + Pi^2) * exp(n) * (4*arctan(Pi)^2 + log(1 + Pi^2)^2)^(n/2 + 1)). - Vaclav Kotesovec, Oct 04 2022
MAPLE
b:= proc(n, m) option remember; `if`(n=0, `if`(m=0, 0,
m*euler(m-1, 0)), m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..26); # Alois P. Heinz, Jun 23 2023
MATHEMATICA
nmax = 26; CoefficientList[Series[2 (Exp[x] - 1)/(Exp[Exp[x] - 1] + 1), {x, 0, nmax}], x] Range[0, nmax]!
Table[2 Sum[StirlingS2[n, k] (1 - 2^k) BernoulliB[k], {k, 0, n}], {n, 0, 26}]
PROG
(PARI) a(n) = 2*sum(k=0, n, stirling(n, k, 2)*(1-2^k)*bernfrac(k)); \\ Michel Marcus, Sep 20 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 19 2022
STATUS
approved