login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357588
The compositional inverse of n -> n^[isprime(n)], where [b] is the Iverson bracket of b.
17
1, -2, 5, -11, 6, 146, -1295, 7712, -36937, 141514, -357676, -322973, 12078666, -102218510, 623243991, -3041134727, 11440387382, -23657862864, -95377084665, 1570488584608, -12255377466362, 72288056416374, -340793435817068, 1186234942871544, -1525020468715715
OFFSET
1,2
MAPLE
# REVERT from N. J. A. Sloane's 'Transforms' (see the footer of the page).
REVERT([seq(if isprime(k) then k else 1 fi, k = 1..25)]);
# Alternative:
CompInv := proc(len, seqfun) local n, k, m, g, M, A;
A := [seq(seqfun(i), i=1..len)];
M := Matrix(len+1, shape=triangular[lower]); M[1, 1] := 1;
for m from 2 to len + 1 do M[m, m] := M[m - 1, m - 1]/A[1];
for k from m-1 by -1 to 2 do M[m, k] := M[m-1, k-1] -
add(A[i+1]*M[m, k+i], i=1..m-k)/A[1] od od; seq(M[k, 2], k=2..len + 1) end:
CompInv(25, n -> if isprime(n) then n else 1 fi);
CROSSREFS
Sequence in context: A363554 A127011 A170868 * A276736 A069162 A300677
KEYWORD
sign
AUTHOR
Peter Luschny, Oct 04 2022
STATUS
approved