Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Oct 05 2022 02:53:51
%S 1,-2,5,-11,6,146,-1295,7712,-36937,141514,-357676,-322973,12078666,
%T -102218510,623243991,-3041134727,11440387382,-23657862864,
%U -95377084665,1570488584608,-12255377466362,72288056416374,-340793435817068,1186234942871544,-1525020468715715
%N The compositional inverse of n -> n^[isprime(n)], where [b] is the Iverson bracket of b.
%p # REVERT from N. J. A. Sloane's 'Transforms' (see the footer of the page).
%p REVERT([seq(if isprime(k) then k else 1 fi, k = 1..25)]);
%p # Alternative:
%p CompInv := proc(len, seqfun) local n, k, m, g, M, A;
%p A := [seq(seqfun(i), i=1..len)];
%p M := Matrix(len+1, shape=triangular[lower]); M[1,1] := 1;
%p for m from 2 to len + 1 do M[m, m] := M[m - 1, m - 1]/A[1];
%p for k from m-1 by -1 to 2 do M[m, k] := M[m-1, k-1] -
%p add(A[i+1]*M[m, k+i], i=1..m-k)/A[1] od od; seq(M[k, 2], k=2..len + 1) end:
%p CompInv(25, n -> if isprime(n) then n else 1 fi);
%Y Cf. A089026, A357368.
%K sign
%O 1,2
%A _Peter Luschny_, Oct 04 2022