login
A357585
Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.
2
1, 0, 1, 0, 2, 1, 0, 7, 4, 1, 0, 32, 18, 6, 1, 0, 166, 92, 33, 8, 1, 0, 926, 509, 188, 52, 10, 1, 0, 5419, 2964, 1113, 328, 75, 12, 1, 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1, 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1
OFFSET
0,5
COMMENTS
Also the matrix inverse of the signed version of A105475 with 1, 0, 0, 0, ... as column 0.
EXAMPLE
Triangle T(n, k) starts:
[0] 1;
[1] 0, 1;
[2] 0, 2, 1;
[3] 0, 7, 4, 1;
[4] 0, 32, 18, 6, 1;
[5] 0, 166, 92, 33, 8, 1;
[6] 0, 926, 509, 188, 52, 10, 1;
[7] 0, 5419, 2964, 1113, 328, 75, 12, 1;
[8] 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1;
[9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
MAPLE
InvPMatrix := proc(dim, seqfun) local k, m, M, A;
if dim < 1 then return [] fi;
A := [seq(seqfun(i), i = 1..dim-1)];
M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
for m from 2 to dim do
M[m, m] := M[m - 1, m - 1] / A[1];
for k from m-1 by -1 to 2 do
M[m, k] := M[m - 1, k - 1] -
add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1]
od od; M end:
InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);
CROSSREFS
Cf. A108524 (column 1), A047891 (row sums), A105475.
Sequence in context: A330862 A269158 A109971 * A284797 A316135 A327620
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Oct 08 2022
STATUS
approved