login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A303061
G.f. A(x) satisfies: [x^(n-1)] (1+x)^(n*(n-1)) / A(x)^n = 0 for n>1.
2
1, 1, 1, 7, 87, 1667, 42971, 1387941, 53739797, 2421203261, 124265293581, 7150727869627, 455701200668539, 31846907669892495, 2421141672213472919, 198897819736367366729, 17556316040185549675881, 1656973308228250148662329, 166509657562826568857464281, 17749793745710561363581851663, 2000554650909636157531234301439
OFFSET
0,4
LINKS
FORMULA
a(n) + a(n-1) = A303060(n) for n>=0.
a(n) ~ c * d^n * n! / n^2, where d = -4 / (LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) = 6.17655460948348035823168... and c = 0.06049920104... - Vaclav Kotesovec, Oct 06 2020
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 87*x^4 + 1667*x^5 + 42971*x^6 + 1387941*x^7 + 53739797*x^8 + 2421203261*x^9 + 124265293581*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients in (1+x)^(n*(n-1)) / A(x)^n begins:
n=1: [1, -1, 0, -6, -74, -1500, -39688, -1302742, ...];
n=2: [1, 0, -2, -12, -159, -3136, -82180, -2680752, ...];
n=3: [1, 3, 0, -26, -300, -5454, -137764, -4398210, ...];
n=4: [1, 8, 24, 0, -548, -9576, -223760, -6847536, ...];
n=5: [1, 15, 100, 350, 0, -16022, -376660, -10771830, ...];
n=6: [1, 24, 270, 1844, 7641, 0, -596908, -17643792, ...];
n=7: [1, 35, 588, 6258, 46186, 224196, 0, -26940146, ...];
n=8: [1, 48, 1120, 16864, 182640, 1478160, 8281968, 0, ...]; ...
in which the main diagonal equals all zeros after the initial term, illustrating that [x^(n-1)] (1+x)^(n*(n-1)) / A(x)^n = 0 for n>1.
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n+1, A=concat(A, 0); A[m] = Vec( (1+x +x*O(x^n))^(m*(m-1))/Ser(A)^m )[m]/m ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A303060.
Sequence in context: A279845 A231447 A020556 * A007803 A034219 A034238
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 17 2018
STATUS
approved