The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A303059 G.f. A(x) satisfies: x = Sum_{n>=1} (-1)^(n-1) * x^(2*n-1)*A(x) / (1 + x^(2*n-1)*A(x)). 1
 1, 1, 2, 4, 7, 13, 26, 50, 96, 190, 377, 747, 1494, 3004, 6051, 12237, 24843, 50557, 103143, 210975, 432461, 888173, 1827562, 3766980, 7776620, 16077958, 33286760, 69002906, 143213917, 297573927, 618964149, 1288754681, 2685872873, 5602584099, 11696560369, 24438577665, 51100370596, 106926690324, 223896358139, 469129457585 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Note that 1 + 4*Sum_{n>=1} (-1)^n * x^(2*n-1)/(1 + x^(2*n-1)) = theta_4(x)^2, where theta_4(x) = 1 + 2*Sum_{n>=1} (-x)^(n^2) is Jacobi's elliptic theta function. LINKS Paul D. Hanna, Table of n, a(n) for n = 0..900 EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 7*x^4 + 13*x^5 + 26*x^6 + 50*x^7 + 96*x^8 + 190*x^9 + 377*x^10 + 747*x^11 + 1494*x^12 + ... such that x = x*A(x)/(1 + x*A(x)) - x^3*A(x)/(1 + x^3*A(x)) + x^5*A(x)/(1 + x^5*A(x)) - x^7*A(x)/(1 + x^7*A(x)) + x^9*A(x)/(1 + x^9*A(x)) -+ ... PROG (PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec( sum(m=1, #A, (-1)^m*x^(2*m-1)*Ser(A)/(1+x^(2*m-1)*Ser(A) )) )[#A] ); A[n+1]} for(n=0, 60, print1(a(n), ", ")) CROSSREFS Sequence in context: A326174 A017995 A251654 * A099155 A342764 A262267 Adjacent sequences:  A303056 A303057 A303058 * A303060 A303061 A303062 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 20 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 19 07:08 EDT 2021. Contains 347554 sequences. (Running on oeis4.)