The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A303058 G.f. A(x) satisfies: A(x) = Sum_{n>=0} (1+x)^(n^2) * x^n / A(x)^n. 11
1, 1, 1, 2, 5, 16, 61, 259, 1228, 6284, 34564, 201978, 1246652, 8084728, 54862377, 388266809, 2857708840, 21822753453, 172550972216, 1410144139982, 11892084248959, 103343300813517, 924223611649636, 8496346816801059, 80201063980292729, 776585923239589681, 7706568335863727817, 78311132374535936605 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
G.f.: A(x) = 1/(1 - q*x/(A(x) - q*(q^2-1)*x/(1 - q^5*x/(A(x) - q^3*(q^4-1)*x/(1 - q^9*x/(A(x) - q^5*(q^6-1)*x/(1 - q^13*x/(A(x) - q^7*(q^8-1)*x/(1 - ...))))))))), where q = (1+x), a continued fraction due to a partial elliptic theta function identity.
G.f.: A(x) = Sum_{n>=0} x^n/A(x)^n * (1+x)^n * Product_{k=1..n} (A(x) - x*(1+x)^(4*k-3)) / (A(x) - x*(1+x)^(4*k-1)), due to a q-series identity.
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 16*x^5 + 61*x^6 + 259*x^7 + 1228*x^8 + 6284*x^9 + 34564*x^10 + 201978*x^11 + 1246652*x^12 + ...
such that
A(x) = 1 + (1+x)*x/A(x) + (1+x)^4*x^2/A(x)^2 + (1+x)^9*x^3/A(x)^3 + (1+x)^16*x^4/A(x)^4 + (1+x)^25*x^5/A(x)^5 + (1+x)^36*x^6/A(x)^6 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^n * x^n/Ser(A)^n ) )[#A] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A307228 A104858 A351143 * A322616 A178123 A138265
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 20 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 13 03:07 EDT 2024. Contains 373366 sequences. (Running on oeis4.)