login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301929
G.f. A(x) satisfies: x = Sum_{n>=1} (1+x)^(n^2) * x^n / A(x)^n.
4
1, 2, 3, 5, 12, 37, 138, 595, 2843, 14844, 83212, 496473, 3128584, 20707672, 143342216, 1034075244, 7752274237, 60251286521, 484483164365, 4023459643530, 34455215830001, 303839675537827, 2755675307738286, 25675275100067189, 245502965520844801, 2406797239543382867, 24170220195274548727, 248441483165679473094, 2611787614440970964621
OFFSET
0,2
LINKS
FORMULA
G.f.: x = Sum_{n>=1} x^n/A(x)^n * (1+x)^n * Product_{k=1..n} (A(x) - x*(1+x)^(4*k-3)) / (A(x) - x*(1+x)^(4*k-1)), due to a q-series identity.
G.f.: 1+x = 1/(1 - q*x/(A(x) - q*(q^2-1)*x/(1 - q^5*x/(A(x) - q^3*(q^4-1)*x/(1 - q^9*x/(A(x) - q^5*(q^6-1)*x/(1 - q^13*x/(A(x) - q^7*(q^8-1)*x/(1 - ...))))))))), where q = (1+x), a continued fraction due to a partial elliptic theta function identity.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 3*x^2 + 5*x^3 + 12*x^4 + 37*x^5 + 138*x^6 + 595*x^7 + 2843*x^8 + 14844*x^9 + 83212*x^10 + 496473*x^11 + 3128584*x^12 + ...
such that
x = (1+x)*x/A(x) + (1+x)^4*x^2/A(x)^2 + (1+x)^9*x^3/A(x)^3 + (1+x)^16*x^4/A(x)^4 + (1+x)^25*x^5/A(x)^5 + (1+x)^36*x^6/A(x)^6 + (1+x)^49*x^7/A(x)^7 + ...
PROG
(PARI) {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0); A[#A] = Vec(sum(n=0, #A, ((1+x)^n +x*O(x^#A))^n * x^n/Ser(A)^n ) )[#A+1] ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 04 2018
STATUS
approved