The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A301930 G.f. A(x,y) satisfies: A(x,y) = x * (1 + y*A(x,y)*A'(x,y)) / (1 + A(x,y)*A'(x,y)), where A'(x,y) = d/dx A(x,y). 4
 1, -1, 1, 4, -7, 3, -25, 63, -52, 14, 200, -661, 808, -432, 85, -1890, 7754, -12586, 10090, -3989, 621, 20248, -99450, 201726, -216125, 128869, -40504, 5236, -240069, 1375831, -3354625, 4508559, -3604985, 1713731, -448122, 49680, 3102000, -20349633, 58049510, -94012374, 94504280, -60352776, 23900178, -5362906, 521721, -43226590, 319817454, -1046234664, 1985688420, -2408884136, 1936407600, -1031098592, 350561508, -69025155, 5994155 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..1035 of rows 1..45 as a flattened triangle. FORMULA Column 0 equals A088716 (signed). Main diagonal equals A182304. Row sums are zeros after the initial row. Absolute row sums = A301931. Sum_{k=0..n-1} T(n,k) * 2^k = C(2*n-1,n-1)/(2*n-1) = A000108(n-1) for n>=1. Sum_{k=0..n-1} T(n,k) * 3^k = A301932(n) for n>=1. Sum_{k=0..n-1} T(n,k) * 4^k = A301933(n) for n>=1. Limit of largest real root of row polynomials converges to 2. EXAMPLE G.f.: A(x,y) = Sum_{n>=1} Sum_{k=0..n-1} T(n,k)*x^n*y^k = x + (-1 + y)*x^2 + (4 - 7*y + 3*y^2)*x^3 + (-25 + 63*y - 52*y^2 + 14*y^3)*x^4 + (200 - 661*y + 808*y^2 - 432*y^3 + 85*y^4)*x^5 + (-1890 + 7754*y - 12586*y^2 + 10090*y^3 - 3989*y^4 + 621*y^5)*x^6 + ... such that A = A(x,y) satisfies A = x*(1 + y*A*A')/(1 + A*A'). This triangle of coefficients T(n,k) in A(x,y) begins: [1]; [-1, 1]; [4, -7, 3]; [-25, 63, -52, 14]; [200, -661, 808, -432, 85]; [-1890, 7754, -12586, 10090, -3989, 621]; [20248, -99450, 201726, -216125, 128869, -40504, 5236]; [-240069, 1375831, -3354625, 4508559, -3604985, 1713731, -448122, 49680]; [3102000, -20349633, 58049510, -94012374, 94504280, -60352776, 23900178, -5362906, 521721]; [-43226590, 319817454, -1046234664, 1985688420, -2408884136, 1936407600, -1031098592, 350561508, -69025155, 5994155]; ... SPECIAL CASES. G.f. C(x) of column 0 satisfies: C = x - C'*C^2, and begins C(x) = x - x^2 + 4*x^3 - 25*x^4 + 200*x^5 - 1890*x^6 +... G.f. D(x) of the main diagonal satisfies: D = x + x*D'*D, and begins D(x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + ... At y = 2, the row polynomials evaluate to form the Catalan numbers: 1 = 1; 1 = -1 + 1*2; 2 = 4 + -7*2 + 3*2^2; 5 = -25 + 63*2 + -52*2^2 + 14*2^3; 14 = 200 + -661*2 + 808*2^2 + -432*2^3 + 85*2^4; 42 = -1890 + 7754*2 + -12586*2^2 + 10090*2^3 + -3989*2^4 + 621*2^5; ... illustrating: C(2*n-1,n-1)/(2*n-1) = Sum_{k=0..n-1} T(n,k) * 2^k. Note: when the g.f. A(x,y) is evaluated at y < 2 and y not= 1, the resulting power series in x will have negative coefficients somewhere in the expansion. PROG (PARI) {T(n, k) = my(A=x); for(i=1, n, A = x*(1 + y*A*A')/(1 + A*A' +x*O(x^n))); polcoeff(polcoeff(A, n, x), k, y)} /* Print as a triangle */ for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", ")); print("")) /* Print as a flattened triangle: */ for(n=1, 10, for(k=0, n-1, print1(T(n, k), ", "); ); ) CROSSREFS Cf. A088716, A182304, A301931, A301932, A301933. Sequence in context: A021215 A063378 A280547 * A365940 A365945 A365943 Adjacent sequences: A301927 A301928 A301929 * A301931 A301932 A301933 KEYWORD sign,tabl AUTHOR Paul D. Hanna, Mar 28 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 10:22 EDT 2024. Contains 372683 sequences. (Running on oeis4.)