login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A301933
G.f. A(x) satisfies: A(x) = x*(1 + 4*A(x)*A'(x)) / (1 + A(x)*A'(x)).
4
1, 3, 24, 291, 4596, 88230, 1979088, 50570823, 1446341388, 45706515546, 1580322048288, 59318131995822, 2401809350808552, 104347127373249036, 4842030589556434656, 239028273094016840223, 12508863342589554285372, 691783629316556340447570, 40316336264435949765811968
OFFSET
1,2
COMMENTS
Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
a(n = 2^k) is odd for k>=0, and a(n) is even elsewhere (conjecture).
LINKS
FORMULA
a(n) ~ c * 3^n * n! * n^(1/3), where c = 0.113581779257198505098700336... - Vaclav Kotesovec, Oct 14 2020
EXAMPLE
G.f.: A(x) = x + 3*x^2 + 24*x^3 + 291*x^4 + 4596*x^5 + 88230*x^6 + 1979088*x^7 + 50570823*x^8 + 1446341388*x^9 + 45706515546*x^10 + ...
such that A = A(x) satisfies: A = x*(1 + 4*A*A')/(1 + A*A').
Odd coefficients in A(x) seem to occur only for x^(2^k), k>=0.
RELATED SERIES.
A(x)*A'(x) = x + 9*x^2 + 114*x^3 + 1815*x^4 + 34542*x^5 + 763014*x^6 + 19171380*x^7 + 539667387*x^8 + 16817885070*x^9 + 574647250650*x^10 + ...
Odd coefficients in A(x)*A'(x) also seem to occur only for x^(2^k), k>=0.
PROG
(PARI) {a(n) = my(L=x); for(i=1, n, L = x*(1 + 4*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 28 2018
STATUS
approved