login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x) = x*(1 + 4*A(x)*A'(x)) / (1 + A(x)*A'(x)).
4

%I #13 Oct 14 2020 08:46:02

%S 1,3,24,291,4596,88230,1979088,50570823,1446341388,45706515546,

%T 1580322048288,59318131995822,2401809350808552,104347127373249036,

%U 4842030589556434656,239028273094016840223,12508863342589554285372,691783629316556340447570,40316336264435949765811968

%N G.f. A(x) satisfies: A(x) = x*(1 + 4*A(x)*A'(x)) / (1 + A(x)*A'(x)).

%C Compare to: C(x) = x*(1 + 2*C(x)*C'(x)) / (1 + C(x)*C'(x)) holds when C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).

%C a(n = 2^k) is odd for k>=0, and a(n) is even elsewhere (conjecture).

%H Paul D. Hanna, <a href="/A301933/b301933.txt">Table of n, a(n) for n = 1..400</a>

%F a(n) ~ c * 3^n * n! * n^(1/3), where c = 0.113581779257198505098700336... - _Vaclav Kotesovec_, Oct 14 2020

%e G.f.: A(x) = x + 3*x^2 + 24*x^3 + 291*x^4 + 4596*x^5 + 88230*x^6 + 1979088*x^7 + 50570823*x^8 + 1446341388*x^9 + 45706515546*x^10 + ...

%e such that A = A(x) satisfies: A = x*(1 + 4*A*A')/(1 + A*A').

%e Odd coefficients in A(x) seem to occur only for x^(2^k), k>=0.

%e RELATED SERIES.

%e A(x)*A'(x) = x + 9*x^2 + 114*x^3 + 1815*x^4 + 34542*x^5 + 763014*x^6 + 19171380*x^7 + 539667387*x^8 + 16817885070*x^9 + 574647250650*x^10 + ...

%e Odd coefficients in A(x)*A'(x) also seem to occur only for x^(2^k), k>=0.

%o (PARI) {a(n) = my(L=x); for(i=1,n, L = x*(1 + 4*L'*L)/(1 + L'*L +x*O(x^n)) ); polcoeff(L,n)}

%o for(n=1,30,print1(a(n),", "))

%Y Cf. A301930, A301931, A301932.

%K nonn

%O 1,2

%A _Paul D. Hanna_, Mar 28 2018