login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099155
Maximum length of a simple path with no chords in the n-dimensional hypercube, also known as snake-in-the-box problem.
9
0, 1, 2, 4, 7, 13, 26, 50, 98
OFFSET
0,3
COMMENTS
Some confusion seems to exist in the distinction between n-snakes and n-coils. Earlier papers and also A000937 used "snake" to mean a closed path, which is called n-coil in newer notation, see Harary et al. a(8) is conjectured to be 97 by Rajan and Shende. [The true value, however, is 98. See Ostergard and Ville, 2014. - N. J. A. Sloane, Apr 06 2014]
Longest open achordal path in n-dimensional hypercube.
After 50, lower bounds on the next terms are 97, 186, 358, 680, 1260. - Darren Casella (artdeco42(AT)yahoo.com), Mar 04 2005
The length of the longest known snake (open path) in dimension 8 (as of December, 2009) is 98. It was found by B. Carlson (confirmed by W. D. Potter) and soon to be reported in the literature. Numerous 97-length snakes are currently published. - W. D. Potter (potter(AT)uga.edu), Feb 24 2009
REFERENCES
B. P. Carlson, D. F. Hougen: Phenotype feedback genetic algorithm operators for heuristic encoding of snakes within hypercubes. In: Proc. 12th Annu. Conf. Genetic and Evolutionary Computation, pp. 791-798 (2010). [Shows a(8) >= 98. - N. J. A. Sloane, Apr 06 2014]
D. Casella and W. D. Potter, "New Lower Bounds for the Snake-in-the-box Problem: Using Evolutionary Techniques to Hunt for Coils". Submitted to IEEE Conference on Evolutionary Computing, 2005.
LINKS
David Allison, Daniel Paulusma, New Bounds for the Snake-in-the-Box Problem, arXiv:1603.05119 [math.CO], 16 Jun 2016.
D. A. Casella and W. D. Potter, New Lower Bounds for the Snake-in-the-box Problem: Using Evolutionary Techniques to Hunt for Snakes, 18th International FLAIRS Conference (2005).
F. Harary, J. P. Hayes and H. J. Wu, A survey of the theory of hypercube graphs, Comput. Math. Applic., 15 (1988) 277-289.
S. Hood, D. Recoskie, J. Sawada, D. Wong, Snakes, coils, and single-track circuit codes with spread k, J. Combin. Optim. 30 (1) (2015) 42-62, Table 2 (lower bounds for n<=17)
K. J. Kochut, Snake-In-The-Box Codes for Dimension 7, Journal of Combinatorial Mathematics and Combinatorial Computing, Vol. 20, pp. 175-185, 1996.
Patric R. J. Östergård, Ville H. Pettersson, Exhaustive Search for Snake-in-the-Box Codes, Graphs and Combinatorics 31, 1019-1028 (2015), shows a(8)=98.
Potter, W. D., R. W. Robinson, J. A. Miller, K. J. Kochut and D. Z. Redys, Using the Genetic Algorithm to Find Snake In The Box Codes, Proceedings of the Seventh International Conference on Industrial & Engineering Applications of Artificial Intelligence and Expert Systems, pp. 421-426, Austin, Texas, 1994.
Dayanand S. Rajan, Anil M. Shende, Maximal and Reversible Snakes in Hypercubes.
Wikipedia, Snake-in-the-box.
Gilles Zémor, An upper bound on the size of the snake-in-the-box, Combinatorica 17.2 (1997): 287-298.
EXAMPLE
a(3)=4: Path of a longest 3-snake starts at 000 and then visits 100 101 111 011.
a(4)=7: Path of a longest 4-snake: 0000 1000 1010 1110 0110 0111 0101 1101.
See figures 1 and 2 in Rajan-Shende.
CROSSREFS
Cf. A000937 = length of maximum n-coil.
Row maxima of A357499.
Sequence in context: A017995 A251654 A303059 * A342764 A262267 A068031
KEYWORD
hard,more,nonn
AUTHOR
Hugo Pfoertner, Oct 11 2004
EXTENSIONS
a(8) from Patric R. J. Östergård and V. H. Pettersson (2014). - N. J. A. Sloane, Apr 06 2014
a(0) prepended by Pontus von Brömssen, Oct 02 2022
STATUS
approved