login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099157
a(n) = 4^(n-1)*U(n-1, 3/2) where U is the Chebyshev polynomial of the second kind.
4
0, 1, 12, 128, 1344, 14080, 147456, 1544192, 16171008, 169345024, 1773404160, 18571329536, 194481487872, 2036636581888, 21327935176704, 223349036810240, 2338941478895616, 24493713157783552, 256501494231072768
OFFSET
0,3
FORMULA
G.f.: x/(1-12*x+16*x^2).
E.g.f.: exp(6*x) * sinh(2*sqrt(5)*x)/sqrt(5).
a(n) = 12*a(n-1) - 16*a(n-2).
a(n) = sqrt(5)/20 * ( (sqrt(5)+1)^(2*n) - (sqrt(5)-1)^(2*n) ).
a(n) = Sum_{k=0..n} binomial(2*n, 2*k+1) * 5^k / 2.
a(n) = 2^(2*n-1)*sinh(2*n*arccsch(2))/sqrt(5). - Federico Provvedi, Feb 02 2021
MATHEMATICA
M= {{0, 1}, {-16, 12}}; v[0] = {0, 1}; v[n_]:= v[n]= M.v[n-1];
Table[v[n][[1]], {n, 0, 50}] (* Roger L. Bagula, Aug 15 2006 *)
LinearRecurrence[{12, -16}, {0, 1}, 20] (* Harvey P. Dale, Sep 27 2015 *)
PROG
(Sage) [lucas_number1(n, 12, 16) for n in range(0, 19)] # Zerinvary Lajos, Apr 27 2009
(PARI) a(n) = 4^(n-1)*polchebyshev(n-1, 2, 3/2); \\ Michel Marcus, Jun 10 2018
(Magma) [n le 2 select n-1 else 12*Self(n-1) -16*Self(n-2): n in [1..30]]; // G. C. Greubel, Jul 20 2023
CROSSREFS
Cf. A099140.
Sequence in context: A275941 A173359 A199037 * A239407 A360878 A163414
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Oct 01 2004
EXTENSIONS
Name edited by Michel Marcus, Jun 10 2018
STATUS
approved