OFFSET
0,2
COMMENTS
In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2n,2k) and a(n) = (1+sqrt(r+1))^(2n)/2 + (1-sqrt(r+1))^(2n)/2.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 0..900
P. J. Szablowski, On moments of Cantor and related distributions, arXiv preprint arXiv:1403.0386 [math.PR], 2014.
Index entries for linear recurrences with constant coefficients, signature (12,-16).
FORMULA
G.f.: (1-6*x)/(1-12*x+16*x^2);
E.g.f.: exp(6*x)*cosh(2*sqrt(5)*x);
a(n) = 4^n * T(n, 6/4) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 5^k*binomial(2n, 2k);
a(n) = (1+sqrt(5))^(2n)/2 + (1-sqrt(5))^(2n)/2.
a(n) = a(0)=1, a(1)=6, 12*a(n-1) - 16*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009
MATHEMATICA
LinearRecurrence[{12, -16}, {1, 6}, 30] (* Harvey P. Dale, Oct 23 2012 *)
PROG
(PARI) a(n) = 4^n*polchebyshev(n, 1, 3/2); \\ Michel Marcus, Sep 08 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 30 2004
STATUS
approved