login
A099141
a(n) = 5^n * T(n,7/5) where T is the Chebyshev polynomial of the first kind.
7
1, 7, 73, 847, 10033, 119287, 1419193, 16886527, 200931553, 2390878567, 28449011113, 338514191407, 4027973401873, 47928772841047, 570303484727833, 6786029465163487, 80746825394092993, 960804818888214727
OFFSET
0,2
COMMENTS
In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2*n,2*k) and a(n) = (1+sqrt(r+1))^(2*n)/2 + (1-sqrt(r+1))^(2*n)/2.
FORMULA
G.f.: (1-7*x)/(1-14*x+25*x^2);
e.g.f.: exp(7*x)*cosh(2*sqrt(6)*x);
a(n) = 5^n * T(n, 7/5) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 6^k * binomial(2n, 2k);
a(n) = (1+sqrt(6))^(2n)/2 + (1-sqrt(6))^(2n)/2.
a(0)=1, a(1)=7, a(n) = 14*a(n-1) - 25*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009
MATHEMATICA
LinearRecurrence[{14, -25}, {1, 7}, 30] (* Harvey P. Dale, Dec 26 2014 *)
CROSSREFS
Column k=6 of A333988.
Sequence in context: A376435 A071060 A092444 * A084768 A357165 A357226
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 30 2004
STATUS
approved