login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099141
a(n) = 5^n * T(n,7/5) where T is the Chebyshev polynomial of the first kind.
7
1, 7, 73, 847, 10033, 119287, 1419193, 16886527, 200931553, 2390878567, 28449011113, 338514191407, 4027973401873, 47928772841047, 570303484727833, 6786029465163487, 80746825394092993, 960804818888214727
OFFSET
0,2
COMMENTS
In general, r^n * T(n,(r+2)/r) has g.f. (1-(r+2)*x)/(1-2*(r+2)*x + r^2*x^2), e.g.f. exp((r+2)*x)*cosh(2*sqrt(r+1)*x), a(n) = Sum_{k=0..n} (r+1)^k*binomial(2*n,2*k) and a(n) = (1+sqrt(r+1))^(2*n)/2 + (1-sqrt(r+1))^(2*n)/2.
FORMULA
G.f.: (1-7*x)/(1-14*x+25*x^2);
e.g.f.: exp(7*x)*cosh(2*sqrt(6)*x);
a(n) = 5^n * T(n, 7/5) where T is the Chebyshev polynomial of the first kind;
a(n) = Sum_{k=0..n} 6^k * binomial(2n, 2k);
a(n) = (1+sqrt(6))^(2n)/2 + (1-sqrt(6))^(2n)/2.
a(0)=1, a(1)=7, a(n) = 14*a(n-1) - 25*a(n-2) for n > 1. - Philippe Deléham, Sep 08 2009
MATHEMATICA
LinearRecurrence[{14, -25}, {1, 7}, 30] (* Harvey P. Dale, Dec 26 2014 *)
CROSSREFS
Column k=6 of A333988.
Sequence in context: A376435 A071060 A092444 * A084768 A357165 A357226
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 30 2004
STATUS
approved