The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A333988 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of (1-(k+1)*x) / (1-2*(k+1)*x+((k-1)*x)^2). 6
 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 4, 17, 32, 1, 1, 5, 28, 99, 128, 1, 1, 6, 41, 208, 577, 512, 1, 1, 7, 56, 365, 1552, 3363, 2048, 1, 1, 8, 73, 576, 3281, 11584, 19601, 8192, 1, 1, 9, 92, 847, 6016, 29525, 86464, 114243, 32768, 1, 1, 10, 113, 1184, 10033, 62976, 265721, 645376, 665857, 131072, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Seiichi Manyama, Antidiagonals n = 0..139, flattened FORMULA T(n,k) = Sum_{j=0..n} k^j * binomial(2*n,2*j). T(0,k) = 1, T(1,k) = k+1 and T(n,k) = 2 * (k+1) * T(n-1,k) - (k-1)^2 * T(n-2,k) for n>1. EXAMPLE Square array begins: 1, 1, 1, 1, 1, 1, ... 1, 2, 3, 4, 5, 6, ... 1, 8, 17, 28, 41, 56, ... 1, 32, 99, 208, 365, 576, ... 1, 128, 577, 1552, 3281, 6016, ... 1, 512, 3363, 11584, 29525, 62976, ... MATHEMATICA T[n_, 0] := 1; T[n_, k_] := Sum[k^j * Binomial[2*n, 2*j], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Sep 04 2020 *) PROG (PARI) {T(n, k) = sum(j=0, n, k^j*binomial(2*n, 2*j))} CROSSREFS Column k=0..9 give A000012, A081294, A001541, A090965, A083884, A099140, A099141, A099142, A165224, A026244. Main diagonal gives A333990. Cf. A009999, A307883, A337389, A333989. Sequence in context: A051467 A243716 A356776 * A195805 A293908 A346249 Adjacent sequences: A333985 A333986 A333987 * A333989 A333990 A333991 KEYWORD nonn,tabl AUTHOR Seiichi Manyama, Sep 04 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 2 05:08 EST 2024. Contains 370460 sequences. (Running on oeis4.)