login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333991
a(n) = Sum_{k=0..n} (-n)^k * binomial(2*n,2*k).
3
1, 0, -7, 64, -527, 3776, -7199, -712704, 28545857, -881543168, 25615822601, -733594255360, 20859188600881, -580152163418112, 15048530008948913, -311489672222081024, 713562283940993281, 511135051171610230784, -48010258775057340355559, 3439412411849176925601792
OFFSET
0,3
LINKS
FORMULA
From Vaclav Kotesovec, Sep 05 2020: (Start)
a(n) = hypergeometric2F1(1/2 - n, -n, 1/2, -n).
a(n) = (1 + i*sqrt(n))^(2*n)/2 + (1 - i*sqrt(n))^(2*n)/2, where i is the imaginary unit.
a(n) = cos(2*n*arctan(sqrt(n))) * (n + 1)^n. (End)
MATHEMATICA
a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 20, 0] (* Amiram Eldar, Sep 04 2020 *)
Table[Hypergeometric2F1[1/2 - n, -n, 1/2, -n], {n, 0, 20}] (* Vaclav Kotesovec, Sep 05 2020 *)
Table[Cos[2*n*ArcTan[Sqrt[n]]] * (n + 1)^n, {n, 0, 20}] // Round (* Vaclav Kotesovec, Sep 05 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-n)^k*binomial(2*n, 2*k))}
CROSSREFS
Main diagonal of A333989.
Sequence in context: A136955 A027767 A055537 * A159617 A098307 A055995
KEYWORD
sign
AUTHOR
Seiichi Manyama, Sep 04 2020
STATUS
approved