login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-n)^k * binomial(2*n,2*k).
3

%I #21 Sep 05 2020 13:13:50

%S 1,0,-7,64,-527,3776,-7199,-712704,28545857,-881543168,25615822601,

%T -733594255360,20859188600881,-580152163418112,15048530008948913,

%U -311489672222081024,713562283940993281,511135051171610230784,-48010258775057340355559,3439412411849176925601792

%N a(n) = Sum_{k=0..n} (-n)^k * binomial(2*n,2*k).

%H Seiichi Manyama, <a href="/A333991/b333991.txt">Table of n, a(n) for n = 0..386</a>

%F From _Vaclav Kotesovec_, Sep 05 2020: (Start)

%F a(n) = hypergeometric2F1(1/2 - n, -n, 1/2, -n).

%F a(n) = (1 + i*sqrt(n))^(2*n)/2 + (1 - i*sqrt(n))^(2*n)/2, where i is the imaginary unit.

%F a(n) = cos(2*n*arctan(sqrt(n))) * (n + 1)^n. (End)

%t a[0] = 1; a[n_] := Sum[(-n)^k * Binomial[2*n, 2*k], {k, 0, n}]; Array[a, 20, 0] (* _Amiram Eldar_, Sep 04 2020 *)

%t Table[Hypergeometric2F1[1/2 - n, -n, 1/2, -n], {n, 0, 20}] (* _Vaclav Kotesovec_, Sep 05 2020 *)

%t Table[Cos[2*n*ArcTan[Sqrt[n]]] * (n + 1)^n, {n, 0, 20}] // Round (* _Vaclav Kotesovec_, Sep 05 2020 *)

%o (PARI) {a(n) = sum(k=0, n, (-n)^k*binomial(2*n, 2*k))}

%Y Main diagonal of A333989.

%Y Cf. A065440, A333990.

%K sign

%O 0,3

%A _Seiichi Manyama_, Sep 04 2020