login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279845
E.g.f. satisfies: A(x - Integral 2*A(x) dx) = x - Integral A(x) dx.
9
1, 1, 7, 87, 1577, 37921, 1143991, 41734167, 1793837945, 89100737537, 5038278258759, 320488252355991, 22712229678267017, 1778818548078114337, 152926844472960316055, 14348332105800041202903, 1461880180517958608890585, 161034066043430013259095681, 19105043857756090069661974951, 2432865068875486088572762200535, 331511875063241457659846364208233, 48205214775404458968179455649349921, 7461345443274460130807423699070922103
OFFSET
1,3
FORMULA
E.g.f. A(x) satisfies:
(1) A(x - Integral 2*A(x) dx) = x - Integral A(x) dx.
(2) A(x) = x + G( 2*A(x) - x ), where G(x) = Integral A(x) dx.
(3) A(x) = x/2 + 1/2 * Series_Reversion(x - Integral 2*A(x) dx).
(4) A( 2*A(x) - x ) = (A'(x) - 1)/(2*A'(x) - 1).
(5) A'(x - Integral 2*A(x) dx) = (1 - A(x))/(1 - 2*A(x)).
a(n) = Sum_{k=0..n-1} A277410(n,k) * 2^k.
EXAMPLE
E.g.f.: A(x) = x + x^2/2! + 7*x^3/3! + 87*x^4/4! + 1577*x^5/5! + 37921*x^6/6! + 1143991*x^7/7! + 41734167*x^8/8! + 1793837945*x^9/9! + 89100737537*x^10/10! + 5038278258759*x^11/11! + 320488252355991*x^12/12! + 22712229678267017*x^13/13! + 1778818548078114337*x^14/14! + 152926844472960316055*x^15/15! +...
PROG
(PARI) /* A(x) = x + (p+q)*G((p*A(x) + q*x)/(p+q)) ; G(x) = Integral A(x) dx: */
{a(n, p=2, q=-1) = my(A=x, G); for(i=1, n, G = intformal(A +x*O(x^n)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q)) +x*O(x^n)); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n, 2, -1), ", "))
(PARI) /* A(x - Integral p*A(x) dx) = x + Integral q*A(x) dx: */
{a(n, p=2, q=-1) = my(A=[1], F=x); for(i=1, n, A=concat(A, 0); F=x*Ser(A); G=intformal(F); A[#A] = -polcoeff(subst(F, x, x - p*G) - q*G, #A) ); n!*A[n]}
for(n=1, 30, print1(a(n, 2, -1), ", "))
(PARI) /* Informal code to generate the first N terms: */
{N=20; p=2; q=-1; A=x; for(i=1, N, G=intformal(A +x*O(x^N)); A = x + (p+q)*subst(G, x, (p*A + q*x)/(p+q))); Vec(serlaplace(A))}
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 05 2017
STATUS
approved