login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A360237
G.f. A(x) satisfies: [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+5))^(n+1) for n >= 0.
10
1, 1, 7, 87, 1495, 31865, 793769, 22290228, 689397657, 23116772771, 831159921411, 31787496335409, 1285410740283302, 54708408148614317, 2441969507507612684, 113988651908380638224, 5551479742274622439616, 281540748098045175486249, 14843765603832700589293465
OFFSET
0,3
COMMENTS
Sequences with g.f. A(x,k) such that [x^n] A(x,k)^(n+1) = [x^n] (1 + x*A(x,k)^(n+k))^(n+1) have a rate of growth: a(n) ~ c(k) * d^n * n! * n^alfa(k), where d = A360279 = 2.1246065836242897918278825746989... (independent on k) and alfa(k) = 1.256334309718765863868089027485828533429844901971596190707510781... + k*0.94499537543174739679595101598799077876961098786349034... - Vaclav Kotesovec, Feb 05 2023
LINKS
FORMULA
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
(1) [x^n] A(x)^(n+1) = [x^n] (1 + x*A(x)^(n+5))^(n+1) for n>=0.
(2) A(x) = Sum_{n>=0} b(n) * x^n/A(x)^n, where b(n) = [x^n] (1 + x*A(x)^(n+5))^(n+1) / (n+1).
a(n) ~ c * d^n * n! * n^alfa, where d = A360279 = 2.12460658362428979..., alfa = 5.981311186877502847847844107425..., c = 0.000055660090340764345672306890127... - Vaclav Kotesovec, Jan 31 2023
EXAMPLE
G.f.: A(x) = 1 + x + 7*x^2 + 87*x^3 + 1495*x^4 + 31865*x^5 + 793769*x^6 + 22290228*x^7 + 689397657*x^8 + 23116772771*x^9 + ...
RELATED SERIES.
G.f. A(x) = B(x/A(x)) where B(x) = B(x*A(x)) begins:
B(x) = 1 + x + 8*x^2 + 109*x^3 + 1984*x^4 + 43816*x^5 + 1116182*x^6 + 31810516*x^7 + 994086874*x^8 + ... + b(n)*x^n + ...
such that b(n) = [x^n] (1 + x*A(x)^(n+5))^(n+1) / (n+1),
as well as b(n) = [x^n] A(x)^(n+1) / (n+1),
so that b(n) begin:
[1/1, 2/2, 24/3, 436/4, 9920/5, 262896/6, 7813274/7, 254484128/8, ...].
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in A(x)^(n+1) begins:
n=0: [1, 1, 7, 87, 1495, 31865, 793769, 22290228, ...];
n=1: [1, 2, 15, 188, 3213, 67938, 1679767, 46874234, ...];
n=2: [1, 3, 24, 304, 5175, 108627, 2666476, 73945899, ...];
n=3: [1, 4, 34, 436, 7403, 154368, 3763020, 103713764, ...];
n=4: [1, 5, 45, 585, 9920, 205626, 4979200, 136401955, ...];
n=5: [1, 6, 57, 752, 12750, 262896, 6325530, 172251150, ...];
n=6: [1, 7, 70, 938, 15918, 326704, 7813274, 211519589, ...];
n=7: [1, 8, 84, 1144, 19450, 397608, 9454484, 254484128, ...]; ...
Compare to the table of coefficients in (1 + x*A(x)^(n+5))^(n+1):
n=0: [1, 1, 5, 45, 585, 9920, 205626, 4979200, ...];
n=1: [1, 2, 13, 126, 1654, 27688, 563565, 13415580, ...];
n=2: [1, 3, 24, 253, 3402, 56679, 1135813, 26574702, ...];
n=3: [1, 4, 38, 436, 6065, 101400, 2008616, 46226504, ...];
n=4: [1, 5, 55, 685, 9920, 167686, 3299580, 74828790, ...];
n=5: [1, 6, 75, 1010, 15285, 262896, 5165838, 115758780, ...];
n=6: [1, 7, 98, 1421, 22519, 396109, 7813274, 173599042, ...];
n=7: [1, 8, 124, 1928, 32022, 578320, 11506804, 254484128, ...]; ...
to see that the main diagonals of the tables are the same.
PROG
(PARI) {a(n) = my(A=[1]); for(m=1, n, A=concat(A, 0); A[m+1] = (Vec((1+x*Ser(A)^(m+5))^(m+1))[m+1] - Vec(Ser(A)^(m+1))[m+1])/(m+1) ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Jan 30 2023
STATUS
approved