The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014500 Number of graphs with unlabeled (non-isolated) nodes and n labeled edges. 20
 1, 1, 2, 9, 70, 794, 12055, 233238, 5556725, 158931613, 5350854707, 208746406117, 9315261027289, 470405726166241, 26636882237942128, 1678097862705130667, 116818375064650241036, 8932347052564257212796, 746244486452472386213939, 67796741482683128375533560 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..100 P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5. Peter Cameron, Thomas Prellberg, Dudley Stark, Asymptotic enumeration of 2-covers and line graphs, Discrete Math. 310 (2010), no. 2, 230-240 (see u_n). G. Labelle, Counting enriched multigraphs according to the number of their edges (or arcs), Discrete Math., 217 (2000), 237-248. G. Paquin, Dénombrement de multigraphes enrichis, Mémoire, Math. Dept., Univ. Québec à Montréal, 2004. [Cached copy, with permission] FORMULA E.g.f.: exp(-1+x/2)*Sum((1+x)^binomial(n, 2)/n!, n=0..infinity) [probably in the Labelle paper]. - Vladeta Jovovic, Apr 27 2004 E.g.f.: exp(x/2)*Sum(A020556(n)*(log(1+x)/2)^n/n!, n=0..infinity). - Vladeta Jovovic, May 02 2004 Binomial transform of A060053. The e.g.f.'s of A020554 (S(x)) and A014500 (U(x)) are related by S(x) = U(e^x-1). The e.g.f.'s of A014500 (U(x)) and A060053 (V(x)) are related by U(x) = e^x*V(x). MAPLE read("transforms") ; A020556 := proc(n) local k; add((-1)^(n+k)*binomial(n, k)*combinat[bell](n+k), k=0..n) end proc: A014500 := proc(n) local i, gexp, lexp; gexp := [seq(1/2^i/i!, i=0..n+1)] ; lexp := add( A020556(i)*((log(1+x))/2)^i/i!, i=0..n+1) ; lexp := taylor(lexp, x=0, n+1) ; lexp := gfun[seriestolist](lexp, 'ogf') ; CONV(gexp, lexp) ; op(n+1, %)*n! ; end proc: seq(A014500(n), n=0..20) ; # R. J. Mathar, Jul 03 2011 MATHEMATICA max = 20; A020556[n_] := Sum[(-1)^(n+k)*Binomial[n, k]*BellB[n+k], {k, 0, n}]; egf = Exp[x/2]*Sum[A020556[n]*(Log[1+x]/2)^n/n!, {n, 0, max}] + O[x]^max; CoefficientList[egf, x]*Range[0, max-1]! (* Jean-François Alcover, Feb 19 2017, after Vladeta Jovovic *) PROG (PARI) \\ here egf1 is A020556 as e.g.f. egf1(n)={my(bell=serlaplace(exp(exp(x + O(x^(2*n+1)))-1))); sum(i=0, n, sum(k=0, i, (-1)^k*binomial(i, k)*polcoef(bell, 2*i-k))*x^i/i!) + O(x*x^n)} seq(n)={my(B=egf1(n), L=log(1+x + O(x*x^n))/2); Vec(serlaplace(exp(x/2 + O(x*x^n))*sum(k=0, n, polcoef(B , k)*L^k)))} \\ Andrew Howroyd, Jan 13 2020 CROSSREFS Row n=2 of A331126. Cf. A020554, A020555, A014501, A060053. Sequence in context: A167016 A300014 A108522 * A101482 A099717 A322772 Adjacent sequences: A014497 A014498 A014499 * A014501 A014502 A014503 KEYWORD nonn AUTHOR Simon Plouffe, Gilbert Labelle (gilbert(AT)lacim.uqam.ca) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 04:41 EDT 2024. Contains 372758 sequences. (Running on oeis4.)