login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331126
Array read by antidiagonals: A(n,k) is the number of T_0 n-regular set multipartitions (multisets of sets) on a k-set.
10
1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 9, 3, 1, 1, 0, 1, 70, 29, 4, 1, 1, 0, 1, 794, 666, 68, 5, 1, 1, 0, 1, 12055, 28344, 3642, 134, 6, 1, 1, 0, 1, 233238, 1935054, 469368, 14951, 237, 7, 1, 1, 0, 1, 5556725, 193926796, 119843417, 5289611, 50985, 388, 8, 1, 1
OFFSET
0,13
COMMENTS
An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of binary matrices with k distinct columns and any number of nonzero rows with n ones in every column and rows in nonincreasing lexicographic order.
LINKS
FORMULA
A(n, k) = Sum_{j=1..k} Stirling1(k, j)*A188392(n, j) for n, k >= 1.
A331391(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6 7
----+---------------------------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 2 9 70 794 12055 233238 ...
3 | 1 1 3 29 666 28344 1935054 193926796 ...
4 | 1 1 4 68 3642 469368 119843417 53059346010 ...
5 | 1 1 5 134 14951 5289611 4681749424 8639480647842 ...
6 | 1 1 6 237 50985 46241343 134332244907 989821806791367 ...
7 | 1 1 7 388 151901 333750928 3032595328876 85801167516707734 ...
...
The A(2,2) = 2 matrices are:
[1 1] [1 0]
[1 0] [1 0]
[0 1] [0 1]
[0 1]
The corresponding set multipartitions are:
{{1,2}, {1}, {2}},
{{1}, {1}, {2}, {2}}.
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
D(p, n, k)={my(v=vector(n)); for(i=1, #p, v[p[i]]++); binomial(WeighT(v)[n], k)*k!/prod(i=1, #v, i^v[i]*v[i]!)}
T(n, k)={my(m=n*k, q=Vec(exp(O(x*x^m) + intformal((x^n-1)/(1-x)))/(1-x))); if(n==0, k<=1, sum(j=0, m, my(s=0); forpart(p=j, s+=D(p, n, k), [1, n]); s*q[#q-j]))}
CROSSREFS
Rows n=1..3 are A000012, A014500, A331389.
Columns k=0..3 are A000012, A000012, A001477, A331390.
Sequence in context: A275784 A331508 A097608 * A362899 A168261 A180997
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 10 2020
STATUS
approved