OFFSET
0,13
COMMENTS
An n-regular set multipartition is a finite multiset of nonempty sets in which each element appears in n blocks.
A set multipartition is T_0 if for every two distinct elements there exists a block containing one but not the other element.
A(n,k) is the number of nonequivalent binary matrices with k distinct columns and any number of nonzero rows with n ones in every column up to permutation of rows and columns.
A(n,k) is the number of non-isomorphic set-systems with k parts each of size n.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..152 (first 17 antidiagonals)
FORMULA
A306019(n) = Sum_{d|n} A(n/d, d).
EXAMPLE
Array begins:
===============================================
n\k | 0 1 2 3 4 5 6 7
----+------------------------------------------
0 | 1 1 0 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 1 ...
2 | 1 1 2 5 11 26 68 177 ...
3 | 1 1 3 12 66 445 4279 53340 ...
4 | 1 1 4 25 278 5532 200589 11662671 ...
5 | 1 1 5 44 966 53535 7043925 ...
6 | 1 1 6 73 2957 431805 ...
...
The A(2,3) = 5 matrices are:
[1 0 0] [1 1 0] [1 1 1] [1 1 0] [1 1 0]
[1 0 0] [1 0 0] [1 0 0] [1 0 1] [1 0 1]
[0 1 0] [0 1 0] [0 1 0] [0 1 0] [0 1 1]
[0 1 0] [0 0 1] [0 0 1] [0 0 1]
[0 0 1] [0 0 1]
[0 0 1]
PROG
(PARI)
WeighT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, (-1)^(n-1)/n))))-1, -#v)}
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={WeighT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))[k]}
T(n, k)={my(m=n*k, s=0); if(m==0, k<=1, forpart(q=m, my(g=sum(t=1, k, K(q, t, n)*x^t/t) + O(x*x^k)); s+=permcount(q)*polcoef(exp(g - subst(g, x, x^2)), k)); s/m!)}
{ for(n=0, 6, for(k=0, 5, print1(T(n, k), ", ")); print) } \\ Andrew Howroyd, Jan 16 2024
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 18 2020
STATUS
approved