login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275784
Number A(n,k) of up-down sequences with k copies each of 1,2,...,n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
8
1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 4, 5, 1, 1, 0, 1, 12, 53, 16, 1, 1, 0, 1, 36, 761, 936, 61, 1, 1, 0, 1, 120, 12661, 87336, 25325, 272, 1, 1, 0, 1, 400, 229705, 9929000, 18528505, 933980, 1385, 1, 1, 0, 1, 1400, 4410665, 1267945800, 17504311533, 6376563600, 45504649, 7936, 1
OFFSET
0,14
LINKS
EXAMPLE
A(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
A(3,2) = 4: 121323, 132312, 231213, 231312.
A(3,3) = 12: 121313232, 121323132, 121323231, 131213232, 132312132, 132323121, 231213132, 231213231, 231312132, 231323121, 232312131, 232313121.
A(2,4) = 1: 12121212.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 1, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 2, 4, 12, 36, 120, ...
1, 5, 53, 761, 12661, 229705, ...
1, 16, 936, 87336, 9929000, 1267945800, ...
1, 61, 25325, 18528505, 17504311533, 19126165462061, ...
1, 272, 933980, 6376563600, 59163289699260, ...
MAPLE
b:= proc(n, l) option remember; `if`(l=[], 1, `if`(irem(add(i,
i=l), 2)=0, add(b(i, subsop(i=`if`(l[i]=1, [][], l[i]-1),
l)), i=n+1..nops(l)), add(b(i-`if`(l[i]=1, 1, 0), subsop(
i=`if`(l[i]=1, [][], l[i]-1), l)), i=1..n-1)))
end:
A:= (n, k)->`if`(k=0, 1, b(`if`(irem(k*n, 2)=0, 0, n+1), [k$n])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
b[n_, l_List] := b[n, l] = If[l == {}, 1, If[EvenQ[Total[l]], Sum[b[i, ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, n+1, Length[l]}], Sum[b[i - If[l[[i]] == 1, 1, 0], ReplacePart[l, i -> If[l[[i]] == 1, Nothing, l[[i]]-1]]], {i, 1, n-1}]]]; A[n_, k_] := If[k == 0, 1, b[If[EvenQ[k*n], 0, n+1], Array[k&, n]]]; Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 23 2017, adapted from Maple *)
CROSSREFS
Columns k=0-3 give: A000012, A000111, A275801, A276636.
Rows n=2-5 give: A000012, A241530, A036916, A276637.
Sequence in context: A108947 A338859 A152459 * A331508 A097608 A331126
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 12 2016
STATUS
approved