OFFSET
0,14
LINKS
Alois P. Heinz, Antidiagonals n = 0..50, flattened
J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, ...
1, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, ...
1, 5, 43, 374, 3199, 26945, ...
1, 23, 1879, 173891, 16140983, 1474050783, ...
1, 119, 102011, 117392909, 142951955371, 173996758190594, ...
MAPLE
g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
binomial(n-1, l[-1]-1)+add(f(sort(subsop(j=l[j]
-1, l))), j=1..nops(l)-1))(add(i, i=l))
end:
f:= l->(n->`if`(n=0, 1, `if`(l[1]=0, 0, `if`(n=1 or l[-1]=1, 1,
`if`(n=2, binomial(l[1]+l[2], l[1])-1, g(l))))))(nops(l)):
A:= (n, k)-> (k*n)!/k!^n - f([k$n]):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
b:= proc(k, p, j, l, t) option remember;
`if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,
j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))
end:
A:= (n, k)-> (n*k)!*(1/k!^n-b(n, k-1, 1, 0, irem(n, 2))*n!):
seq(seq(A(n, d-n), n=0..d), d=0..12); # Alois P. Heinz, Mar 03 2016
MATHEMATICA
b[k_, p_, j_, l_, t_] := b[k, p, j, l, t] = If[k == 0, (-1)^t/l!, If[p < 0, 0, Sum[b[k-i, p-1, j+1, l + i j, Mod[t + i j, 2]]/(i! p!^i), {i, 0, k}]] ];
A[n_, k_] := (n k)! (1/k!^n - b[n, k-1, 1, 0, Mod[n, 2]] n!); Table[ Table[ A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Apr 07 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 19 2016
STATUS
approved