login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A267532 Number of words on {1,1,2,2,...,n,n} with longest increasing subsequence of length < n. 5
0, 0, 1, 43, 1879, 102011, 7235651, 674641325, 81537026047, 12498099730471, 2375632826877259, 548818073236649129, 151476182218777630655, 49229890784448694885163, 18608906461974462064310179, 8094874797394331233877338741, 4015057931973886657462193434111 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Or number of words on {1,1,2,2,...,n,n} avoiding the pattern 12...n.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..200

FORMULA

a(n) = (2*n)! * ( 1/(2^n) - Sum_{k=0..n} (-1)^k * C(n,k) / (n+k)! ).

a(n) = A000680(n) - A006902(n).

a(n) = A267479(n,n-1) for n>0.

a(n) = Sum_{k=0..n-1} A267480(n,k).

EXAMPLE

a(2) = 1: 2211.

a(3) = 43: 113322, 131322, 133122, 133212, 133221, 211332, 213132, 213312, 213321, 221133, 221313, 221331, 223113, 223131, 223311, 231132, 231312, 231321, 232113, 232131, 232311, 233112, 233121, 233211, 311322, 313122, 313212, 313221, 321132, 321312, 321321, 322113, 322131, 322311, 323112, 323121, 323211, 331122, 331212, 331221, 332112, 332121, 332211.

MAPLE

b:= proc(n) option remember; `if`(n<3, [1$2, 5][n+1], (

      (n^3+n^2-7*n+4)*b(n-1)-2*(2*n-3)*(n-1)^3*b(n-2))/(n-2))

    end:

a:= n-> (2*n)!/(2^n)-b(n):

seq(a(n), n=0..20);

CROSSREFS

Cf. A000079, A000142, A000680, A006902, A010050, A267479, A267480, A269042.

Column k=2 of A269129.

Sequence in context: A331777 A262470 A009987 * A335207 A076572 A015258

Adjacent sequences:  A267529 A267530 A267531 * A267533 A267534 A267535

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jan 16 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 09:26 EDT 2021. Contains 343995 sequences. (Running on oeis4.)