login
A267534
Indices of Lucas numbers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.
1
4, 8, 11, 16, 20, 21, 23, 28, 32, 35, 40, 44, 45, 47, 52, 56, 59, 64, 68, 69, 71, 76, 80, 83, 88, 92, 93, 95, 100, 104, 107, 112, 116, 117, 119, 124, 128, 131, 136, 140, 141, 143, 148, 152, 155, 160, 164, 165, 167, 172, 176, 179, 184, 188, 189, 191, 196, 200, 203, 208, 212
OFFSET
1,1
COMMENTS
First differences of this sequence are 4, 3, 5, 4, 1, 2, 5, 4, 3, 5, 4, 1, 2, 5, 4, 3, 5, 4, 1, 2, 5, 4, 3, 5, 4, 1, 2, 5, 4, 3, 5, 4, 1, 2, 5, ...
So "4, 3, 5, 4, 1, 2, 5" appears periodically in first differences.
Corresponding Lucas numbers are 7, 47, 199, 2207, 15127, 24476, 64079, 710647, 4870847, 20633239, 228826127, 1568397607, 2537720636, 6643838879, 73681302247, 505019158607, 2139295485799, 23725150497407, 162614600673847, ...
LINKS
FORMULA
Conjectures from Colin Barker, Jan 30 2016: (Start)
a(n) = a(n-1)+a(n-7)-a(n-8) for n>8.
G.f.: x*(2 +x)*(2 +x +x^2 +2*x^3 +x^4 +x^6) / ((1 -x)^2*(1 +x +x^2 +x^3 +x^4 +x^5 +x^6)).
(End)
EXAMPLE
4 is a term because A000032(4) = 7 and 7 = x^2 + y^2 + z^2 has no solution for integer values of x, y and z.
PROG
(PARI) isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri-7 ; if( j % 8==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0); }
l(n) = fibonacci(n+1) + fibonacci(n-1);
for(n=0, 1e3, if(isA004215(l(n)), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Jan 16 2016
STATUS
approved