login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of sequences with k copies each of 1,2,...,n avoiding the pattern 12...n; square array A(n,k), n>=0, k>=0, read by antidiagonals.
21

%I #25 Jan 21 2020 09:47:18

%S 0,0,1,0,0,1,0,0,1,1,0,0,1,5,1,0,0,1,43,23,1,0,0,1,374,1879,119,1,0,0,

%T 1,3199,173891,102011,719,1,0,0,1,26945,16140983,117392909,7235651,

%U 5039,1,0,0,1,224296,1474050783,142951955371,117108036719,674641325,40319,1

%N Number A(n,k) of sequences with k copies each of 1,2,...,n avoiding the pattern 12...n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%H Alois P. Heinz, <a href="/A269129/b269129.txt">Antidiagonals n = 0..50, flattened</a>

%H J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. <a href="http://www.ams.org/mathscinet-getitem?mr=681905">MR 681905</a>

%F A(n,k) = A089759(k,n) - A047909(k,n) = A187783(n,k) - A047909(k,n).

%e Square array A(n,k) begins:

%e 0, 0, 0, 0, 0, 0, ...

%e 1, 0, 0, 0, 0, 0, ...

%e 1, 1, 1, 1, 1, 1, ...

%e 1, 5, 43, 374, 3199, 26945, ...

%e 1, 23, 1879, 173891, 16140983, 1474050783, ...

%e 1, 119, 102011, 117392909, 142951955371, 173996758190594, ...

%p g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*

%p binomial(n-1, l[-1]-1)+add(f(sort(subsop(j=l[j]

%p -1, l))), j=1..nops(l)-1))(add(i, i=l))

%p end:

%p f:= l->(n->`if`(n=0, 1, `if`(l[1]=0, 0, `if`(n=1 or l[-1]=1, 1,

%p `if`(n=2, binomial(l[1]+l[2], l[1])-1, g(l))))))(nops(l)):

%p A:= (n, k)-> (k*n)!/k!^n - f([k$n]):

%p seq(seq(A(n, d-n), n=0..d), d=0..12);

%p # second Maple program:

%p b:= proc(k, p, j, l, t) option remember;

%p `if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,

%p j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))

%p end:

%p A:= (n, k)-> (n*k)!*(1/k!^n-b(n, k-1, 1, 0, irem(n, 2))*n!):

%p seq(seq(A(n, d-n), n=0..d), d=0..12); # _Alois P. Heinz_, Mar 03 2016

%t b[k_, p_, j_, l_, t_] := b[k, p, j, l, t] = If[k == 0, (-1)^t/l!, If[p < 0, 0, Sum[b[k-i, p-1, j+1, l + i j, Mod[t + i j, 2]]/(i! p!^i), {i, 0, k}]] ];

%t A[n_, k_] := (n k)! (1/k!^n - b[n, k-1, 1, 0, Mod[n, 2]] n!); Table[ Table[ A[n, d-n], {n, 0, d}], {d, 0, 12}] // Flatten (* _Jean-François Alcover_, Apr 07 2016, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A057427, A033312, A267532, A269113, A269114, A269115, A269116, A269117, A269118, A269119, A269120.

%Y Rows n=0-10 give: A000004, A000007, A000012, A269121, A269122, A269123, A269124, A269125, A269126, A269127, A269128.

%Y Main diagonal gives: A268751.

%Y Cf. A047909, A089759, A187783, A331562.

%K nonn,tabl

%O 0,14

%A _Alois P. Heinz_, Feb 19 2016