login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A047909 Array read by antidiagonals upwards: h(n,k) = number of sequences with n copies each of 1,2,...,k and longest increasing subsequence of length k (n>=1, k>=1). 26
1, 1, 1, 1, 5, 1, 1, 19, 47, 1, 1, 69, 1306, 641, 1, 1, 251, 31451, 195709, 11389, 1, 1, 923, 729811, 46922017, 50775091, 248749, 1, 1, 3431, 16928840, 10258694241, 162588279629, 20117051281, 6439075, 1, 1, 12869, 397222288, 2176464012941, 449363984934526, 1077273394836829, 11260558754404, 192621953, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Old name was: Triangle of numbers arising from problem of complete increasing subsequences.
Table h_p(k) on page 80 in the Horton & Kurn reference has two typos. - Alois P. Heinz, Feb 05 2016
Conjecture: Column k > 1 is asymptotic to k^(k*n + 1/2) / (2*Pi*n)^((k-1)/2). - Vaclav Kotesovec, Feb 21 2016
Conjecture: Row k > 1 is asymptotic to sqrt(k) * (k^k/(k-1)!)^n * n^((k-1)*n) / exp((k-1)*(n+1)). - Vaclav Kotesovec, Feb 21 2016
LINKS
J. D. Horton and A. Kurn, Counting sequences with complete increasing subsequences, Congressus Numerantium, 33 (1981), 75-80. MR 681905
FORMULA
Reference gives explicit formula.
EXAMPLE
First few antidiagonals are:
1;
1, 1;
1, 5, 1;
1, 19, 47, 1;
1, 69, 1306, 641, 1;
1, 251, 31451, 195709, 11389, 1;
1, 923, 729811, 46922017, 50775091, 248749, 1;
...
First few rows are:
1, 1, 1, 1, 1, ...
1, 5, 47, 641, 11389, ...
1, 19, 1306, 195709, 50775091, ...
1, 69, 31451, 46922017, 162588279629, ...
1, 251, 729811, 10258694241, 449363984934526, ...
1, 923, 16928840, 2176464012941, 1162145520205261219, ...
...
MAPLE
g:= proc(l) option remember; (n-> f(l[1..nops(l)-1])*
binomial(n-1, l[-1]-1)+ add(f(sort(subsop(j=l[j]
-1, l))), j=1..nops(l)-1))(add(i, i=l))
end:
f:= l-> (n-> `if`(n<2 or l[-1]=1, 1, `if`(l[1]=0, 0, `if`(
n=2, binomial(l[1]+l[2], l[1])-1, g(l)))))(nops(l)):
h:= (n, k)-> f([n$k]):
seq(seq(h(1+d-k, k), k=1..d), d=1..10); # Alois P. Heinz, Feb 11 2016
# second Maple program:
b:= proc(k, p, j, l, t) option remember;
`if`(k=0, (-1)^t/l!, `if`(p<0, 0, add(b(k-i, p-1,
j+1, l+i*j, irem(t+i*j, 2))/(i!*p!^i), i=0..k)))
end:
h:= (p, k)-> k!*(p*k)!*b(k, p-1, 1, 0, irem(k, 2)):
seq(seq(h(1+d-k, k), k=1..d), d=1..10); # Alois P. Heinz, Mar 03 2016
MATHEMATICA
g[l_] := g[l] = Function[n, f[l[[1 ;; -2]]]*Binomial[n-1, l[[-1]]-1] + Sum[ f[Sort[ReplacePart[l, j -> l[[j]] - 1]]], {j, 1, Length[l] -1}]][ Total[ l]]; f[l_] := Function [n, If[n<2 || l[[-1]]==1, 1, If[l[[1]]==0, 0, If[n == 2, Binomial[l[[1]] + l[[2]], l[[1]] ] - 1, g[l]]]]][Length[l]]; h[n_, k_] := f[Array[n&, k]]; Table[Table[h[1+d-k, k], {k, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Feb 19 2016, after Alois P. Heinz *)
CROSSREFS
Main diagonal gives A268485.
Sequence in context: A168551 A262307 A144397 * A171243 A111577 A176242
KEYWORD
nonn,easy,tabl,nice
AUTHOR
EXTENSIONS
New name, two terms corrected and more terms from Alois P. Heinz, Feb 08 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 16 16:13 EDT 2024. Contains 371749 sequences. (Running on oeis4.)