login
A241530
a(n) = binomial(n,floor(n/2))*binomial(n+1,floor(n/2+1/2))*(1+floor(n/2))/(1+2*floor(n/2)).
6
1, 2, 4, 12, 36, 120, 400, 1400, 4900, 17640, 63504, 232848, 853776, 3171168, 11778624, 44169840, 165636900, 625739400, 2363904400, 8982836720, 34134779536, 130332794592, 497634306624, 1907598175392, 7312459672336, 28124844893600, 108172480360000
OFFSET
0,2
LINKS
FORMULA
a(n) = ((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)) for n>=2, a(n) = 2^n for n<2. - Alois P. Heinz, Apr 25 2014
G.f.: ((1+4*x)*K(4*x) - E(4*x))/(2*Pi*x), where K and E are the complete elliptic integrals of the first and second kind, respectively, with modulus k = 4*x. - Benedict W. J. Irwin, Aug 15 2016
From Wolfdieter Lang, Sep 06 2016 (Start):
The preceding g.f. can be rewritten as ((1+4*x)*F(1/2,1/2;1;(4*x)^2) -
F(-1/2,1/2;1;(4*x)^2))/(4*x), where F is the hypergyometric function F(a,b;c;z).
This leads to the bisection a(2*k) = ((2*k)!)^2/k!^4 = A002894(k) and a(2*k+1) = 2*(2*k)!*(2*k+1)!/((k+1)*k!^4) = 2*A000894(k), for k >= 0.
(End)
MAPLE
A241530 := n -> binomial(n, iquo(n, 2))*binomial(n+1, iquo(n+1, 2))
*(1+iquo(n, 2))/(1+2*iquo(n, 2)); seq(A241530(n), n=0..26);
# second Maple program:
a:= proc(n) option remember; `if`(n<2, 2^n,
((8*n-4)*a(n-1)+16*(n-1)*(n-2)*a(n-2))/(n*(n+1)))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Aug 10 2016
MATHEMATICA
CoefficientList[Series[(-EllipticE[16 x^2] + (1 + 4 x) EllipticK[16 x^2])/(2Pi x), {x, 0, 20}], x] (* Benedict W. J. Irwin, Aug 15 2016 *)
Table[Binomial[n, #] Binomial[n + 1, Floor[(n + 1)/2]] (1 + #)/(1 + 2 #) &@ Floor[n/2], {n, 0, 26}] (* Michael De Vlieger, Aug 15 2016 *)
CROSSREFS
Row n=3 of A275784.
Sequence in context: A009623 A148208 A245798 * A123071 A048116 A148209
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Apr 25 2014
STATUS
approved