OFFSET
0,13
COMMENTS
The condition that the columns be in decreasing order is equivalent to considering nonequivalent matrices with distinct columns up to permutation of columns.
A(n,k) is the number of labeled n-uniform hypergraphs with k edges and no isolated vertices. When n=2 these objects are graphs.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..1325
FORMULA
EXAMPLE
Array begins:
====================================================================
n\k | 0 1 2 3 4 5 6
----+---------------------------------------------------------------
0 | 1 1 0 0 0 0 0 ...
1 | 1 1 1 1 1 1 1 ...
2 | 1 1 6 62 900 16824 384668 ...
3 | 1 1 31 2649 441061 121105865 49615422851 ...
4 | 1 1 160 116360 231173330 974787170226 ...
5 | 1 1 841 5364701 131147294251 ...
6 | 1 1 4494 256452714 78649359753286 ...
...
The A(2,2) = 6 matrices are:
[1 0] [1 0] [1 0] [1 1] [1 0] [1 0]
[1 0] [0 1] [0 1] [1 0] [1 1] [0 1]
[0 1] [1 0] [0 1] [0 1] [0 1] [1 1]
[0 1] [0 1] [1 0]
PROG
(PARI) T(n, k)={my(m=n*k); sum(j=0, m, binomial(binomial(j, n), k)*sum(i=j, m, (-1)^(i-j)*binomial(i, j)))}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Jan 13 2020
STATUS
approved