login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137219
a(n) = (A126086(n) - 3*A001850(n) + 2)/6.
3
1, 62, 2649, 116360, 5364701, 256452714, 12582472897, 629389744448, 31955247002601, 1641724953315062, 85159811841234857, 4452782349569991736, 234393562418967430389, 12409423916979629786322, 660253088667210584565249
OFFSET
1,2
LINKS
FORMULA
a(n) = Sum_{m >= 0} binomial(binomial(m, n), 3)/2^(m+1).
MAPLE
A126086 := proc(n) local x, y, z ; coeftayl(coeftayl(coeftayl(1/(1-x-y-z-x*y-x*z-y*z-x*y*z), z=0, n), y=0, n), x=0, n) ; end: A001850 := proc(n) local k ; add(binomial(n, k)*binomial(n+k, k), k=0..n) ; end: A137219 := proc(n) (A126086(n)-3*A001850(n)+2)/6 ; end: seq(A137219(n), n=1..30) ; # R. J. Mathar, Apr 01 2008
MATHEMATICA
A126086[n_]:= A126086[n]= Sum[(-1)^k*Binomial[n+k, n]*HypergeometricPFQ[{-k, n+1, n+1}, {1, 1}, 1], {k, 0, 2*n}];
A001850[n_]:= Hypergeometric2F1[-n, n+1, 1, -1];
A137219[n_]:= (A126086[n] - 3*A001850[n] + 2)/6;
Table[A137219[n], {n, 30}] (* G. C. Greubel, Jan 05 2022 *)
PROG
(Sage)
def A137219(n): return round( sum( binomial(binomial(j, n), 3)/2^(j+1) for j in (0..1000) ) )
[A137219(n) for n in (1..30)] # G. C. Greubel, Jan 05 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 06 2008, Mar 16 2008
EXTENSIONS
More terms from R. J. Mathar, Apr 01 2008
STATUS
approved