|
|
|
|
1, 4, 75, 2712, 116681, 5366384, 256461703, 12582521536, 629390010177, 31955248465164, 1641724961412515, 85159811886281576, 4452782349821587705, 234393562420377364008, 12409423916987553634575, 660253088667255226947072
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Andrew Howroyd, Table of n, a(n) for n = 0..200
|
|
FORMULA
|
a(n) = -Sum_{m>=0} binomial(-binomial(m,n),3)/2^(m+1).
a(n) = A137219(n) + A001850(n). - R. J. Mathar, Apr 01 2008
a(n) = Sum_{j=0..3*n} binomial(binomial(j,n)+2, 3) * (Sum_{i=j..3*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020
|
|
MAPLE
|
A126086 := proc(n) local x, y, z ; coeftayl(coeftayl(coeftayl(1/(1-x-y-z-x*y-x*z-y*z-x*y*z), z=0, n), y=0, n), x=0, n) ; end: A001850 := proc(n) local k ; add(binomial(n, k)*binomial(n+k, k), k=0..n) ; end: A137220 := proc(n) (A126086(n)+3*A001850(n)+2)/6 ; end: seq(A137220(n), n=0..30) ; # R. J. Mathar, Apr 01 2008
|
|
MATHEMATICA
|
T[n_, k_] := With[{m = n k}, Sum[Binomial[Binomial[j, n] + k - 1, k] Sum[ (-1)^(i - j) Binomial[i, j], {i, j, m}], {j, 0, m}]];
Table[T[n, 3], {n, 0, 15}] (* Jean-François Alcover, Apr 10 2020, after Andrew Howroyd *)
|
|
PROG
|
(PARI) a(n) = {sum(j=0, 3*n, binomial(binomial(j, n)+2, 3) * sum(i=j, 3*n, (-1)^(i-j)*binomial(i, j)))} \\ Andrew Howroyd, Feb 09 2020
|
|
CROSSREFS
|
Column k=3 of A330942.
Cf. A047665, A137219.
Sequence in context: A072373 A006412 A206456 * A006236 A120248 A191505
Adjacent sequences: A137217 A137218 A137219 * A137221 A137222 A137223
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Vladeta Jovovic, Mar 06 2008, Mar 16 2008
|
|
EXTENSIONS
|
More terms from R. J. Mathar, Apr 01 2008
|
|
STATUS
|
approved
|
|
|
|