login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (A126086(n) - 3*A001850(n) + 2)/6.
3

%I #9 Jan 05 2022 18:16:50

%S 1,62,2649,116360,5364701,256452714,12582472897,629389744448,

%T 31955247002601,1641724953315062,85159811841234857,

%U 4452782349569991736,234393562418967430389,12409423916979629786322,660253088667210584565249

%N a(n) = (A126086(n) - 3*A001850(n) + 2)/6.

%H G. C. Greubel, <a href="/A137219/b137219.txt">Table of n, a(n) for n = 1..500</a>

%F a(n) = Sum_{m >= 0} binomial(binomial(m, n), 3)/2^(m+1).

%p A126086 := proc(n) local x,y,z ; coeftayl(coeftayl(coeftayl(1/(1-x-y-z-x*y-x*z-y*z-x*y*z),z=0,n),y=0,n),x=0,n) ; end: A001850 := proc(n) local k ; add(binomial(n,k)*binomial(n+k,k),k=0..n) ; end: A137219 := proc(n) (A126086(n)-3*A001850(n)+2)/6 ; end: seq(A137219(n),n=1..30) ; # _R. J. Mathar_, Apr 01 2008

%t A126086[n_]:= A126086[n]= Sum[(-1)^k*Binomial[n+k,n]*HypergeometricPFQ[{-k, n+1, n+1}, {1,1}, 1], {k,0,2*n}];

%t A001850[n_]:= Hypergeometric2F1[-n, n+1, 1, -1];

%t A137219[n_]:= (A126086[n] - 3*A001850[n] + 2)/6;

%t Table[A137219[n], {n, 30}] (* _G. C. Greubel_, Jan 05 2022 *)

%o (Sage)

%o def A137219(n): return round( sum( binomial(binomial(j, n), 3)/2^(j+1) for j in (0..1000) ) )

%o [A137219(n) for n in (1..30)] # _G. C. Greubel_, Jan 05 2022

%Y Cf. A001850, A047665, A126086, A137220.

%K easy,nonn

%O 1,2

%A _Vladeta Jovovic_, Mar 06 2008, Mar 16 2008

%E More terms from _R. J. Mathar_, Apr 01 2008