login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A331511
Square array T(n,k), n >= 0, k >= 0, read by descending antidiagonals, where column k is the expansion of (1 - (k-3)*x)/(1 - 2*(k-1)*x + ((k-3)*x)^2)^(3/2).
8
1, 1, 0, 1, 2, -15, 1, 4, -6, 32, 1, 6, 9, -12, 105, 1, 8, 30, 16, 30, -576, 1, 10, 57, 140, 25, 60, 105, 1, 12, 90, 384, 630, 36, -140, 5760, 1, 14, 129, 772, 2505, 2772, 49, -280, -13167, 1, 16, 174, 1328, 6430, 16008, 12012, 64, 630, -30400
OFFSET
0,5
LINKS
FORMULA
T(n,k) = Sum_{j=0..n} (k-3)^(n-j) * (n+j+1) * binomial(n,j) * binomial(n+j,j).
T(n,k) = Sum_{j=0..n} (k-2)^j * (j+1) * binomial(n+1,j+1)^2.
T(n,k) = (n + 1)^2*hypergeom([-n, -n], [2], k - 2). - Peter Luschny, Jan 20 2020
n * (2*n-1) * T(n,k) = 2 * (2 * (k-1) * n^2 - k + 2) * T(n-1,k) - (k-3)^2 * n * (2*n+1) * T(n-2,k) for n>1. - Seiichi Manyama, Jan 25 2020
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
-15, -6, 9, 30, 57, 90, ...
32, -12, 16, 140, 384, 772, ...
105, 30, 25, 630, 2505, 6430, ...
-576, 60, 36, 2772, 16008, 52524, ...
.
From Peter Luschny, Jan 20 2020: (Start)
Read by ascending antidiagonals gives:
[0] 1
[1] 0, 1
[2] -15, 2, 1
[3] 32, -6, 4, 1
[4] 105, -12, 9, 6, 1
[5] -576, 30, 16, 30, 8, 1
[6] 105, 60, 25, 140, 57, 10, 1
[7] 5760, -140, 36, 630, 384, 90, 12, 1
[8] -13167, -280, 49, 2772, 2505, 772, 129, 14, 1
[9] -30400, 630, 64, 12012, 16008, 6430, 1328, 174, 16, 1 (End)
MAPLE
T := (n, k) -> (n + 1)^2*hypergeom([-n, -n], [2], k - 2):
seq(lprint(seq(simplify(T(n, k)), k=0..7)), n=0..6) # Peter Luschny, Jan 20 2020
MATHEMATICA
T[n_, k_] := (n + 1)^2 * HypergeometricPFQ[{-n, -n}, {2}, k - 2]; Table[Table[T[n, k - n], {n, 0, k}], {k, 0, 9}] //Flatten (* Amiram Eldar, Jan 20 2020 *)
CROSSREFS
Columns k=0..5 give A331551, A331552, A000290(n+1), A002457, A108666(n+1), A331323.
T(n,n+3) gives A331512.
Sequence in context: A228342 A027739 A193307 * A201050 A299321 A357097
KEYWORD
sign,tabl
AUTHOR
Seiichi Manyama, Jan 18 2020
STATUS
approved