login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A108666
Number of (1,1)-steps in all Delannoy paths of length n.
10
0, 1, 8, 57, 384, 2505, 16008, 100849, 628736, 3888657, 23900040, 146146473, 889928064, 5399971161, 32668236552, 197123362785, 1186790473728, 7131032334369, 42773183020296, 256161548120857, 1531966218561920, 9150330147133161, 54591847064667528, 325361790187810257
OFFSET
0,3
COMMENTS
A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E =(1,0), N = (0,1) and D = (1,1).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..200 from Vincenzo Librandi)
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5
Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
FORMULA
a(n) = Sum_{k=0..n} k*A104684(k).
a(n) = Sum_{k=1..n} k*binomial(n, k)*binomial(2*n-k, n).
G.f.: x*(1-x)/(1-6*x+x^2)^(3/2).
D-finite with recurrence (n-1)*(2*n-3)*a(n) = 4*(3*n^2-6*n+2)*a(n-1) - (n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (3+2*sqrt(2))^n*sqrt(n)/(2^(7/4)*sqrt(Pi)). - Vaclav Kotesovec, Oct 18 2012
a(n) = n^2*hypergeom([-n+1, -n+1], [2], 2). - Peter Luschny, Jan 20 2020
EXAMPLE
a(2)=8 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely, DD, DNE,DEN,NED,END,NDE,EDN,NENE,NEEN,ENNE,ENEN,NNEE and EENN, we have a total of eight D steps.
MAPLE
a := n -> add(k*binomial(n, k)*binomial(2*n-k, n), k=1..n): seq(a(n), n=0..24);
# Alternative:
a := n -> n^2*hypergeom([-n+1, -n+1], [2], 2):
seq(simplify(a(n)), n=0..24); # Peter Luschny, Jan 20 2020
MATHEMATICA
CoefficientList[Series[x*(1-x)/(1-6*x+x^2)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
PROG
(PARI) for(n=0, 25, print1(sum(k=0, n, k*binomial(n, k)*binomial(2*n-k, n)), ", ")) \\ G. C. Greubel, Jan 31 2017
(Python)
from math import comb
def A108666(n): return sum(comb(n, k)**2*k<<k-1 for k in range(1, n+1)) if n else 0 # Chai Wah Wu, Mar 22 2023
CROSSREFS
a(n)/n = A047781(n) (for n >= 1).
Sequence in context: A079926 A346228 A283125 * A295711 A164031 A297369
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Jul 07 2005
STATUS
approved