|
|
A108666
|
|
Number of (1, 1)-steps in all Delannoy paths of length n.
|
|
10
|
|
|
0, 1, 8, 57, 384, 2505, 16008, 100849, 628736, 3888657, 23900040, 146146473, 889928064, 5399971161, 32668236552, 197123362785, 1186790473728, 7131032334369, 42773183020296, 256161548120857, 1531966218561920, 9150330147133161, 54591847064667528, 325361790187810257
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E =(1,0), N = (0,1) and D = (1,1).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = Sum_{k=1..n} k*binomial(n, k)*binomial(2*n-k, n).
G.f.: x*(1-x)/(1-6*x+x^2)^(3/2).
D-finite with recurrence (n-1)*(2*n-3)*a(n) = 4*(3*n^2-6*n+2)*a(n-1) - (n-1)*(2*n-1)*a(n-2). - Vaclav Kotesovec, Oct 18 2012
a(n) ~ (3+2*sqrt(2))^n*sqrt(n)/(2^(7/4)*sqrt(Pi)). - Vaclav Kotesovec, Oct 18 2012
a(n) = n^2*hypergeom([-n+1, -n+1], [2], 2). - Peter Luschny, Jan 20 2020
|
|
EXAMPLE
|
a(2)=8 because in the 13 (=A001850(2)) Delannoy paths of length 2, namely, DD, DNE,DEN,NED,END,NDE,EDN,NENE,NEEN,ENNE,ENEN,NNEE and EENN, we have a total of eight D steps.
|
|
MAPLE
|
a := n -> add(k*binomial(n, k)*binomial(2*n-k, n), k=1..n): seq(a(n), n=0..24);
# Alternative:
a := n -> n^2*hypergeom([-n+1, -n+1], [2], 2):
|
|
MATHEMATICA
|
CoefficientList[Series[x*(1-x)/(1-6*x+x^2)^(3/2), {x, 0, 20}], x] (* Vaclav Kotesovec, Oct 18 2012 *)
|
|
PROG
|
(PARI) for(n=0, 25, print1(sum(k=0, n, k*binomial(n, k)*binomial(2*n-k, n)), ", ")) \\ G. C. Greubel, Jan 31 2017
(Python)
from math import comb
def A108666(n): return sum(comb(n, k)**2*k<<k-1 for k in range(1, n+1)) if n else 0 # Chai Wah Wu, Mar 22 2023
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|