The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A108668 Self-erasure surviving integers in the concatenation of all nonnegative integers. 1
 0, 15, 35, 49, 51, 59, 90, 96, 210, 212, 242, 246, 248, 252, 283, 288, 297, 313, 315, 317, 319, 326, 349, 359, 392, 413, 420, 432, 486, 579, 581, 612, 615, 632, 688, 692, 759, 768, 779, 786, 812, 820, 842, 847, 854, 872, 880, 886, 910, 959, 991, 3210, 3212, 3310, 3312 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Concatenation of the nonnegative integers is: 012345678910111213141516... Read the leftmost digit [0], jump accordingly *over* 0 digits and erase the one you're landing on (here, 1): you get 0(1)2345678910111213141516... (erased digits are put between parentheses). Read now the leftmost unread and visible digit [2], jump accordingly *over* 2 (visible) digits and erase the one you're landing on (5): you get 0(1)234(5)678910111213141516... Read again the leftmost unread digit [3], jump accordingly *over* 3 digits and erase the one you're landing on (8): you get 0(1)234(5)67(8)910111213141516..., etc. At the end of the (infinite) procedure, keep the integers which appear to be at the same place as in the starting concatenation but which stand also between two erased digits [something like: ...(a)15(b)...]. "0" and 15 are the first such "survivors". String starts like this: 0(1)234(5)67(8)91(0)1(1)1(2)(1)3(1)(4)15(1)(6)... ^ <-- hit.............................^^ <-- hit Conjecture: the sequence is finite. Last term? Comments from Sean A. Irvine: (Start) My string starts like this: 0(1)234(5)67(8)91(0)1(1)1(2)(1)3(1)(4)15(1)(6)(1)718(1)9(2)0(2)1(2)2(2)32(4)(2)\ 5(2)6(2)(7)282(9)(3)0(3)(1)(3)233(3)(4)35(3)6(3)7(3)839(4)0(4)(1)(4)2(4)34(4)(4)\ 54(6)(4)74(8)49(5)(0)51(5)2(5)(3)(5)45(5)(5)6(5)75(8)59(6)0(6)(1)6(2)(6)3(6)465\ (6)6(6)(7)6(8)697(0)(7)17(2)(7)(3)7(4)757(6)(7)778(7)9(8)(0)(8)18(2)(8)3(8)4(8)\ 58(6)(8)7(8)8(8)(9)90(9)(1)929(3)(9)4(9)(5)96(9)79(8)(9)910(0)... The sequence is obviously finite because it is clearly impossible to have more than 10 digits in a row without erasure. Hence the largest member is certainly less than 10^10. In fact a(4890)=9999854622 is the last term. (End) LINKS Sean A. Irvine, Table of n, a(n) for n = 1..4890 [The complete list of terms] Eric Angelini and Alexandre Wajnberg, Self-erasing Champernownes decimal expansion Eric Angelini and Alexandre Wajnberg, Self-erasing Champernownes decimal expansion (a) [Cached with permission] Eric Angelini and Alexandre Wajnberg, Self-erasing Champernownes decimal expansion (b) [Cached with permission] CROSSREFS Sequence in context: A143202 A321182 A268463 * A201018 A187400 A162280 Adjacent sequences:  A108665 A108666 A108667 * A108669 A108670 A108671 KEYWORD base,easy,fini,full,nonn AUTHOR Eric Angelini and Alexandre Wajnberg, Jul 07 2005 EXTENSIONS Corrected and extended by Sean A. Irvine, Aug 13 2010 Edited by Jon E. Schoenfield, Nov 29 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 24 07:18 EST 2020. Contains 331189 sequences. (Running on oeis4.)