login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357097
A multiplication table for the rows of the extended Wythoff array. See comments for definition.
0
0, 1, 1, 2, 15, 2, 3, 8, 8, 3, 4, 12, 4, 12, 4, 5, 44, 18, 18, 44, 5, 6, 19, 24, 27, 24, 19, 6, 7, 62, 28, 96, 96, 28, 62, 7, 8, 26, 34, 42, 128, 42, 34, 26, 8, 9, 30, 14, 51, 56, 56, 51, 14, 30, 9, 10, 91, 44, 57, 180, 65, 180, 57, 44, 91, 10, 11, 37, 50, 66, 76, 79, 79, 76, 66, 50, 37, 11
OFFSET
0,4
COMMENTS
Square array A(x,y), x >= 0, y >= 0, defined as follows:
(1) Extend the Wythoff array infinitely to the left, maintaining the Fibonacci recurrence (see A287870 examples). We denote this extended array as eW(n,m), n >= 0, m any integer, indexed such that eW(n,0) = n. From each row n, form the set of pairs S_n = {(eW(n,m+1),eW(n,m)) : integer m)}.
(2) Define addition and multiplication of pairs by (j1,k1) + (j2,k2) = (j1+j2, k1+k2) and (j1,k1) o (j2,k2) = (j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2). (This defines a commutative ring with identity (1,0).)
(3) For nonnegative integers x and y, there is an integer z such that for every pair (j_x,k_x) in S_x and every pair (j_y,k_y) in S_y, (j_x,k_x) o (j_y,k_y) is in S_z. Define A(x,y) = z.
As a binary operation, A(.,.) is analogous to multiplication of coefficients in scientific numeric notation. The column position, m, used to define a pair in (1) above does not affect the eventual outcome, A(x,y), in (3), as no special pairs are selected from the pairs in S_x or S_y. The column position is analogous to the exponent. Notice also A(1,1) = 15 is substantially larger than A(2,2) = 4. This can be seen as analogous to 0.3 * 0.4 = 0.12 requiring more digits than 0.5 * 0.8 = 0.4.
LINKS
Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21.
P. Arnoux, Some remarks about Fibonacci multiplication, Appl. Math. Lett. 2 (1989), 319-320.
Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
FORMULA
A(x,y) = g(j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2), where j1 = A035336(x+1), j2 = A035336(y+1), k1 = A003622(x+1), k2 = A003622(y+1) and g(j,k) = (if j = A000201(k+1) then k otherwise g(k,j-k)).
A(x,y) = A(y,x).
A(x,0) = x.
A(x, A(y,z)) = A(A(x,y), z).
A022344(A(x,y)) = A022344(x) * A022344(y).
A(A019586(x), A019586(y)) = A019586(A101330(x,y)). (conjectured)
EXAMPLE
Calculation for A(1,2). Rows 1 and 2 of A287870 (indexed from 0) start 1, 3, ... and 2, 4, ... . So we may use the pairs (3,1) and (4,2). The defined multiplication gives (3*4 + 1*2, 3*2 + 4*1 - 1*2) = (14,8). 8, 14 , ... is in row 8 of A287870, so A(1,2) = 8.
For A(1,1), we start as above to get (3*3 + 1*1, 3*1 + 3*1 - 1*1) = (10,5). In the more general case, we form a sequence using the Fibonacci recurrence (as ..., 5, 10, ... may be in the extension leftwards of A287870). This starts 5, 10, 5+10=15, 10+15=25, 15+25=40, ... . We observe 15, 25, 40, ... is in row 15. So A(1,1) = 15.
The top left corner of the array:
0 1 2 3 4 5 6 7 8 9
1 15 8 12 44 19 62 26 30 91
2 8 4 18 24 28 34 14 44 50
3 12 18 27 96 42 51 57 66 198
4 44 24 96 128 56 180 76 88 264
5 19 28 42 56 65 79 33 102 116
6 62 34 51 180 79 253 107 124 371
7 26 14 57 76 33 107 45 138 157
8 30 44 66 88 102 124 138 160 182
9 91 50 198 264 116 371 157 182 544
PROG
(PARI) lowerw(n) = (n+sqrtint(5*n^2))\2 ; \\ A000201
upperw(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
compoundw(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ A003622
wpair(p) = {my(x=p[2], y = p[1], z); while(1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = upperw(n)); if ((x == xx) && (y == yy), return([xx, yy])); if (xx > x, ok = 0); n++; ); z = y; y += x; x = z; ); }
row(p) = {my(x=p[1], y=p[2], u); while (1, my(n=1, ok=1); while(ok, my(xx = lowerw(n), yy = compoundw(n)); if ((x == xx) && (y == yy), return(n)); if (xx > x, ok = 0); n++; ); u = x; x = y - u; y = u; ); } \\ similar to A120873
wrow(p) = row(wpair(p));
prodpair(v1, v2) = my(j1=v1[1], j2 = v2[1], k1 = v1[2], k2 = v2[2]); [j1*j2 + k1*k2, j1*k2 + k1*j2 - k1*k2];
pair(n) = [lowerw(n+1), n];
T(n, k) = my(pn = pair(n), pk = pair(k), px = prodpair(pn, pk)); wrow(px)-1; \\ Michel Marcus, Sep 18 2022
CROSSREFS
See the formula section for the relationships with A000201, A003622, A019586, A035336, A101330.
Sequence in context: A331511 A201050 A299321 * A248537 A352000 A330073
KEYWORD
nonn,tabl,changed
AUTHOR
Peter Munn, Sep 11 2022
STATUS
approved