The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035336 a(n) = 2*floor(n*phi) + n - 1, where phi = (1+sqrt(5))/2. 35
 2, 7, 10, 15, 20, 23, 28, 31, 36, 41, 44, 49, 54, 57, 62, 65, 70, 75, 78, 83, 86, 91, 96, 99, 104, 109, 112, 117, 120, 125, 130, 133, 138, 143, 146, 151, 154, 159, 164, 167, 172, 175, 180, 185, 188, 193, 198, 201, 206, 209, 214, 219, 222, 227, 230, 235, 240 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Second column of Wythoff array. These are the numbers in A022342 that are not images of another value of the same sequence if it is given offset 0. - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001 Also, positions of 2's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011 From Amiram Eldar, Mar 21 2022: (Start) Numbers k for which the Zeckendorf representation A014417(k) ends with 0, 1, 0. The asymptotic density of this sequence is sqrt(5)-2. (End) LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018. J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences. Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3. Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021). Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), pp. 267-273. N. J. A. Sloane, Classic Sequences. FORMULA a(n) = B(A(n)), with A(k)=A000201(k) and B(k)=A001950(k) (Wythoff BA-numbers). a(n) = A(n) + A(A(n)), with A(A(n))=A003622(n) (Wythoff AA-numbers). Equals A022342(A003622(n)+1). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001, sequence reference updated by Peter Munn, Nov 23 2017 a(n) = 2*A003622(n) - (n - 1) = A003623(n) - 1. - Franklin T. Adams-Watters, Jun 30 2009 A005713(a(n)) = 0. - Reinhard Zumkeller, Dec 30 2011 a(n) = A089910(n) - 2. - Bob Selcoe, Sep 21 2014 MAPLE Digits := 100: t := (1+sqrt(5))/2; [ seq(2*floor((n+1)*t)+n, n=0..80) ]; MATHEMATICA Table[2*Floor[n*(1 + Sqrt[5])/2] + n - 1, {n, 50}] (* Wesley Ivan Hurt, Nov 21 2017 *) Array[2 Floor[# GoldenRatio] + # - 1 &, 60] (* Robert G. Wilson v, Dec 12 2017 *) PROG (Haskell) import Data.List (elemIndices) a035336 n = a035336_list !! (n-1) a035336_list = elemIndices 0 a005713_list -- Reinhard Zumkeller, Dec 30 2011 (Magma) [2*Floor(n*(1+Sqrt(5))/2)+n-1: n in [1..80]]; // Vincenzo Librandi, Nov 19 2016 (Python) from sympy import floor from mpmath import phi def a(n): return 2*floor(n*phi) + n - 1 # Indranil Ghosh, Jun 10 2017 (Python) from math import isqrt def A035336(n): return (n+isqrt(5*n**2)&-2)+n-1 # Chai Wah Wu, Aug 17 2022 CROSSREFS Cf. A001622, A014417, A022342, A066096. Cf. A139764, A089910, A194584. Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. Sequence in context: A190447 A190375 A066097 * A351388 A246128 A343990 Adjacent sequences: A035333 A035334 A035335 * A035337 A035338 A035339 KEYWORD nonn AUTHOR N. J. A. Sloane and J. H. Conway STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 2 22:39 EDT 2024. Contains 374875 sequences. (Running on oeis4.)