|
|
A190375
|
|
a(n) = n + [n*r/u] + [n*s/u] + [n*t/u]; r=sin(Pi/5), s=1/r, t=sin(2*Pi/5), u=1/t.
|
|
4
|
|
|
2, 7, 10, 15, 19, 23, 27, 31, 36, 40, 43, 47, 52, 55, 60, 63, 68, 73, 76, 81, 83, 88, 92, 96, 100, 105, 109, 113, 117, 121, 126, 128, 133, 138, 141, 146, 149, 154, 158, 162, 166, 169, 174, 178, 182, 186, 191, 194, 199, 202, 207, 212, 214, 219, 222, 227, 231, 235, 239, 244, 248, 252, 255, 259, 264, 267, 272, 277, 280, 285, 288, 293, 297, 300
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
(* A190372 *) f[n_] := n + Floor[n/sin(Pi/5)^2] + Floor[2*n*cos(Pi/5)] + Floor[n/(sin(2*Pi/5)*sin(Pi/5))].
(* A190373 *) g[n_] := n + Floor[n*sin(Pi/5)^2] + Floor[n*sin(Pi/5)* sin(2*Pi/5)] + Floor[n/(2*cos(Pi/5))].
(* A190374 *) h[n_] := n + Floor[n/(2*cos(Pi/5))] + Floor[n/(sin(Pi/5)* sin(2*Pi/5))] + Floor[n/sin(2*Pi/5)^2].
(* A190375 *) i[n_] := n + Floor[n*sin(Pi/5)*sin(2*Pi/5)] + Floor[2*n*cos(Pi/5)] + Floor[n*sin(2*Pi/5)^2].
|
|
MATHEMATICA
|
r=Sin[Pi/5]; s=1/r; t=Sin[2*Pi/5]; u=1/t;
f[n_] := n + Floor[n*s/r] + Floor[n*t/r] + Floor[n*u/r];
g[n_] := n + Floor[n*r/s] + Floor[n*t/s] + Floor[n*u/s];
h[n_] := n + Floor[n*r/t] + Floor[n*s/t] + Floor[n*u/t];
i[n_] := n + Floor[n*r/u] + Floor[n*s/u] + Floor[n*t/u];
Table[f[n], {n, 1, 120}] (* A190372 *)
Table[g[n], {n, 1, 120}] (* A190373 *)
Table[h[n], {n, 1, 120}] (* A190374 *)
Table[i[n], {n, 1, 120}] (* A190375 *)
|
|
PROG
|
(PARI) for(n=1, 100, print1(n + floor(n*sin(Pi/5)*sin(2*Pi/5)) + floor(2*n*cos(Pi/5)) + floor(n*sin(2*Pi/5)^2), ", ")) \\ G. C. Greubel, Apr 05 2018
(Magma) R:=RealField(); [n + Floor(n*Sin(Pi(R)/5)*Sin(2*Pi(R)/5)) + Floor(2*n*Cos(Pi(R)/5)) + Floor(n*Sin(2*Pi(R)/5)^2): n in [1..100]]; // G. C. Greubel, Apr 05 2018
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|