This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A035337 Third column of Wythoff array. 13
 3, 11, 16, 24, 32, 37, 45, 50, 58, 66, 71, 79, 87, 92, 100, 105, 113, 121, 126, 134, 139, 147, 155, 160, 168, 176, 181, 189, 194, 202, 210, 215, 223, 231, 236, 244, 249, 257, 265, 270, 278, 283, 291, 299, 304, 312 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Also, positions of 3's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011 The formula a(n) = 3*A003622(n)-n+1 = 3AA(n)-n+1 conjectured by Layman below is correct, since it is well known that AA(n)+1 = B(n) = A(n)+n, where B = A001950, and so 3AA(n)-n+1 = 3B(n)-n-2 = 3A(n)+2n-2. - Michel Dekking, Aug 31 2017 LINKS J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences C. Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008) 08.3.3 N. J. A. Sloane, Classic Sequences FORMULA a(n) = F(4)A(n)+F(3)(n-1) = 3A(n)+2n-2, where A = A000201 and F = A000045. - Michel Dekking, Aug 31 2017 It appears that a(n) = 3*A003622(n) - n + 1. - John W. Layman, Aug 25 2011 MAPLE t := (1+sqrt(5))/2 ; [ seq(3*floor((n+1)*t)+2*n, n=0..80) ]; MATHEMATICA Table[3 Floor[n GoldenRatio] + 2 n - 2, {n, 46}] (* Michael De Vlieger, Aug 31 2017 *) PROG (Python) from sympy import floor from mpmath import phi def a(n): return 3*floor((n + 1)*phi) + 2*n # Indranil Ghosh, Jun 10 2017 (PARI) a(n) = 2*n + 3*floor((1+sqrt(5))*(n+1)/2); \\ Altug Alkan, Sep 18 2017 CROSSREFS Cf. A139764. Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp. Sequence in context: A158507 A030765 A198515 * A029500 A243770 A298701 Adjacent sequences:  A035334 A035335 A035336 * A035338 A035339 A035340 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 14 12:40 EST 2019. Contains 329114 sequences. (Running on oeis4.)