login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101864
Wythoff BB numbers.
21
5, 13, 18, 26, 34, 39, 47, 52, 60, 68, 73, 81, 89, 94, 102, 107, 115, 123, 128, 136, 141, 149, 157, 162, 170, 178, 183, 191, 196, 204, 212, 217, 225, 233, 238, 246, 251, 259, 267, 272, 280, 285, 293, 301, 306, 314, 322, 327, 335, 340, 348, 356, 361, 369, 374, 382, 390, 395
OFFSET
1,1
COMMENTS
a(n)-3 are also the positions of 1 in A188436. - Federico Provvedi, Nov 22 2018
LINKS
J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
C. Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008) 08.3.3.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
FORMULA
a(n) = B(B(n)), n>=1, with B(k)=A001950(k) (Wythoff B-numbers). a(0)=0 with B(0)=0.
MAPLE
b:=n->floor(n*((1+sqrt(5))/2)^2): seq(b(b(n)), n=1..60); # Muniru A Asiru, Dec 05 2018
MATHEMATICA
b[n_] := Floor[n * GoldenRatio^2]; a[n_] := b[b[n]]; Array[a, 60] (* Amiram Eldar, Nov 22 2018 *)
PROG
(Python)
from sympy import S
for n in range(1, 60): print(int(S.GoldenRatio**2*(int(n*S.GoldenRatio**2))), end=', ') # Stefano Spezia, Dec 06 2018
CROSSREFS
Second row of A101858.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
Sequence in context: A120062 A081769 A188030 * A190432 A197563 A022138
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 28 2005
STATUS
approved