The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A101864 Wythoff BB numbers. 21
 5, 13, 18, 26, 34, 39, 47, 52, 60, 68, 73, 81, 89, 94, 102, 107, 115, 123, 128, 136, 141, 149, 157, 162, 170, 178, 183, 191, 196, 204, 212, 217, 225, 233, 238, 246, 251, 259, 267, 272, 280, 285, 293, 301, 306, 314, 322, 327, 335, 340, 348, 356, 361, 369, 374, 382, 390, 395 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n)-3 are also the positions of 1 in A188436. - Federico Provvedi, Nov 22 2018 LINKS Muniru A Asiru, Table of n, a(n) for n = 1..2000 J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018. C. Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008) 08.3.3. Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021). C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273. FORMULA a(n) = B(B(n)), n>=1, with B(k)=A001950(k) (Wythoff B-numbers). a(0)=0 with B(0)=0. MAPLE b:=n->floor(n*((1+sqrt(5))/2)^2): seq(b(b(n)), n=1..60); # Muniru A Asiru, Dec 05 2018 MATHEMATICA b[n_] := Floor[n * GoldenRatio^2]; a[n_] := b[b[n]]; Array[a, 60] (* Amiram Eldar, Nov 22 2018 *) PROG (Python) from sympy import S for n in range(1, 60): print(int(S.GoldenRatio**2*(int(n*S.GoldenRatio**2))), end=', ') # Stefano Spezia, Dec 06 2018 CROSSREFS Second row of A101858. Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. Sequence in context: A120062 A081769 A188030 * A190432 A197563 A022138 Adjacent sequences:  A101861 A101862 A101863 * A101865 A101866 A101867 KEYWORD nonn AUTHOR N. J. A. Sloane, Jan 28 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 2 12:39 EDT 2022. Contains 355004 sequences. (Running on oeis4.)