login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A101864 Wythoff BB numbers. 21
5, 13, 18, 26, 34, 39, 47, 52, 60, 68, 73, 81, 89, 94, 102, 107, 115, 123, 128, 136, 141, 149, 157, 162, 170, 178, 183, 191, 196, 204, 212, 217, 225, 233, 238, 246, 251, 259, 267, 272, 280, 285, 293, 301, 306, 314, 322, 327, 335, 340, 348, 356, 361, 369, 374, 382, 390, 395 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

a(n)-3 are also the positions of 1 in A188436. - Federico Provvedi, Nov 22 2018

LINKS

Muniru A Asiru, Table of n, a(n) for n = 1..2000

J.-P. Allouche, F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.

C. Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008) 08.3.3

C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.

FORMULA

a(n) = B(B(n)), n>=1, with B(k)=A001950(k) (Wythoff B-numbers). a(0)=0 with B(0)=0.

MAPLE

b:=n->floor(n*((1+sqrt(5))/2)^2): seq(b(b(n)), n=1..60); # Muniru A Asiru, Dec 05 2018

MATHEMATICA

b[n_] := Floor[n * GoldenRatio^2]; a[n_] := b[b[n]]; Array[a, 60] (* Amiram Eldar, Nov 22 2018 *)

PROG

(Python)

from sympy import S

for n in range(1, 60): print(int(S.GoldenRatio**2*(int(n*S.GoldenRatio**2))), end=', ') # Stefano Spezia, Dec 06 2018

CROSSREFS

Second row of A101858.

Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.

Sequence in context: A120062 A081769 A188030 * A190432 A197563 A022138

Adjacent sequences:  A101861 A101862 A101863 * A101865 A101866 A101867

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 28 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 17 22:50 EST 2019. Contains 319251 sequences. (Running on oeis4.)